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Abstract 20 

Since the past century, rising CO2 levels have led to global changes (ocean warming 21 

and acidification) with subsequent effects on marine ecosystems and organisms. 22 

Macroalgae-herbivore interactions have a main role in the regulation of marine 23 

community structure (top-down control). Gradients of warming prompt complex non-24 

linear effects on organism metabolism, cascading into altered trophic interactions and 25 

community dynamics. However, not much is known on how will acidification and 26 

grazer assemblage composition shape these effects. Within this context, we aimed to 27 

assess the combined effects of warming gradients and acidification on macroalgae-28 

herbivore interactions, using three cosmopolitan species, abundant in the Iberian 29 

Peninsula and closely associated in nature: the amphipod Melita palmata, the gastropod 30 

Gibbula umbilicalis, and the green macroalga Ulva rigida. Under two CO2 treatments 31 

(∆CO2 ≃ 450 µatm) across a temperature gradient (13.5, 16.6, 19.9 and 22.1 ºC), two 32 

mesocosm experiments were performed to assess grazer consumption rates and 33 

macroalgae-herbivore interaction, respectively. Warming (Experiment I and II) and 34 

acidification (Experiment II) prompted negative effects in grazer’s survival and species-35 

specific differences in consumption rates. M. palmata was shown to be the stronger 36 

grazer per biomass (but not per capita), and also the most affected by climate stressors. 37 

Macroalgae-herbivore interaction strength was markedly shaped by the temperature 38 

gradient, while simultaneous acidification lowered thermal optimal threshold. In the 39 

near future, warming and acidification are likely to strengthen top-down control, but 40 

further increases in disturbances may lead to bottom-up regulated communities. Finally, 41 

our results suggest that grazer assemblage composition may modulate future 42 

macroalgae-herbivore interactions.  43 

 44 
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Introduction 47 

Anthropogenic CO2 accumulates in the atmosphere, retaining infrared radiation and 48 

rising temperatures of both terrestrial and ocean ecosystems. As a result, global average 49 

sea surface temperature increased approximately 0.1 °C per decade during the last 40 50 

years (Taboada and Anadón, 2012) and a further 2-5 ºC increase in mean sea surface 51 

temperature is predicted by 2100 (IPCC, 2013). Biologically, temperature affects 52 

metabolic rates by altering biochemical reactions’ kinetics and energies. According to 53 

basic metabolic theory, all organisms possess a survival thermal window, where 54 

increasing temperature increases reaction rates until an optimal level is reached 55 

(Angilletta, 2009). Beyond this threshold, further increases in temperature cause 56 

physiological stress (e.g. protein denaturation), resulting in a steep decline in metabolic 57 

rates and consequently in biological processes (see Fig. 1 in Kingsolver, 2009) such as 58 

growth, development and feeding activity (Angilletta, 2009; Kingsolver, 2009; Mertens 59 

et al., 2015). In fact, due to differential effects on autotrophic and heterotrophic 60 

metabolisms, metabolic theory of ecology (MTE) dictates that producers will show a 61 

weaker response to temperature than consumers (Yvon-Durocher et al., 2010). Thus, as 62 

individual changes lead to community effects (Mertens et al., 2015), small increases in 63 

temperature are predicted to strengthen top-down control by herbivores on marine 64 

primary producers, as a consequence of higher herbivore consumption rates relative to 65 

macroalgal production (Eklöf et al., 2012; O’Connor, 2009). Furthermore, it is also 66 

possible that marine communities find an equilibrium by balancing herbivore grazing 67 

and algal biomass growth, through compensatory mechanisms which allow for 68 

community stabilization (Connell and Ghedini, 2015). 69 

The dissolution of atmospheric CO2 into the oceans alters seawater carbonate system 70 

and the associated drop in pH levels is known as ocean acidification. Since the past 71 
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century, atmospheric CO2 concentrations increased to approximately 400 µatm and are 72 

predicted to reach 1000 µatm by the end of this century, with a corresponding drop of 73 

0.14-0.35 units in mean ocean pH (IPCC, 2013). Calcifying animals and algae are 74 

deemed as the most imperiled marine organisms due to deregulation of acid-base 75 

processes, decrease in calcification rates and/or increase in calcium carbonate 76 

dissolution, and hypercapnic growth inhibition (Byrne, 2011; Koch et al., 2013; Kroeker 77 

et al., 2011). Non-calcifying organisms register quite different responses across taxa 78 

(Connell and Russell, 2010; Kroeker et al., 2010; Poore et al., 2013), since some species 79 

of crustaceans and fish show aptitude to partially offset the negative effects of 80 

acidification through mechanisms of acid-base compensation, changes in metabolism, 81 

energy reallocation and/or increase in mobility (Larsen et al., 1997; Melzner et al., 82 

2009; Widdicombe and Spicer, 2008; Wood et al., 2008). For seaweeds, dissolved CO2 83 

is normally used as a substrate for photosynthesis, and non-calcareous species may 84 

benefit from increases of this resource (Koch et al., 2013). Nevertheless, some species, 85 

e.g. Ulva rigida, are unaffected by increased CO2, as present day carbon concentrations 86 

already saturate its photosynthetic and growth physiological processes (Rautenberger et 87 

al., 2015). Identically to warming effects, ocean acidification may affect species 88 

interaction strength due to differential sensitivities to pH changes, potentially cascading 89 

into alterations in species competition dynamics and trophic interactions (Falkenberg et 90 

al., 2013; Hepburn et al., 2011; Kroeker et al., 2012). 91 

To date, most research performed examining climate change impacts of marine 92 

systems have used multi-level single stressor (Connell et al., 2013; Falkenberg et al., 93 

2013; O’Connor, 2009), straightforward two-stressors/two-levels (2 x 2) (Connell and 94 

Russell, 2010; Gaitán-Espitia et al., 2014; Veteli et al., 2002), or single species 95 

experimental designs (see Wernberg et al., 2012 for a review). However, climate change 96 
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will create new complex physicochemical scenarios characterized by multi-levels of 97 

stressors interacting. It is critical to improve our ecological knowledge on the potential 98 

combined effects of global stressors not only on different trophic levels, but also on 99 

interacting communities to strengthen our capacity in predicting future impacts of 100 

climate change on marine ecosystems (Poore et al., 2013). Whilst an increase in top-101 

down control is likely under warming alone (López-Urrutia et al., 2006; O’Connor, 102 

2009), forecasting impacts on macroalgae-herbivore interactions elicited by temperature 103 

and acidification effects is far more complex, given the non-linear variation in organism 104 

metabolic rates across stressor gradients (Mertens et al., 2015). Further increasing 105 

temperature (Mertens et al., 2015) and/or exposure to multiple stressors (Ghedini et al., 106 

2015a) are reported to overcome the compensatory/grazing metabolic threshold, leading 107 

to shifts in community regimes, from top-down (herbivore-regulated) to bottom-up 108 

(algae- or nutrient-regulated) systems. Moreover, studies comparing mono-specific 109 

herbivore populations versus mixed herbivore populations under climate change 110 

scenarios are scarce (Alsterberg et al., 2013), but essential to understand community 111 

effects on natural systems. Within this context, here we studied how distinct CO2 112 

concentrations across a temperature gradient would differently impact the survival and 113 

consumption rates of two common herbivore species from the rocky intertidal; the non-114 

calcifying amphipod species Melita palmata (Montagu, 1804), and the calcifying 115 

gastropod species Gibbula umbilicalis (da Costa, 1778). Additionally, we tested how 116 

these climate stressors would alter algal biomass of an abundant rocky intertidal algal 117 

species, Ulva rigida (Agardh, 1823). Finally, we hypothesized that community 118 

dynamics, i.e. macroalgae-herbivore interaction strength, would be interactively 119 

modified by temperature and CO2. Simultaneously, we investigated if grazer species 120 
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identity may also play a role in shaping community response, due to differential effects 121 

on grazers’ survival and consumption rates. 122 

 123 

Methods 124 

Study species 125 

Gastropods are considered efficient grazers (Jernakoff and Nielsen, 1997), generally 126 

grazing larger algal portions than amphipods (Morrisey, 1988). We used the calcifying 127 

gastropod Gibbula umbilicalis as a large grazer species and the non-calcifying 128 

amphipod Melita palmata as a small-bodied grazer (~1/10 biomass of G. umbilicalis) to 129 

assess the joint effects of different climate change stressors in macroalgae-herbivore 130 

interactions. Both macroinvertebrate species are common grazers from the western 131 

Atlantic intertidal rocky coast of the Iberian Peninsula. They can be found associated to 132 

mixed macroalgal beds, including large accumulations of Ulva spp., searching for food 133 

and refuge during low intertidal. The green seaweeds from the Ulva genus are very 134 

common opportunistic primary producer in shallow coastal waters and tidal pools in 135 

rocky shore communities (Aníbal et al., 2007).  136 

The three species (i.e. G. umbilicalis, M. palmata and U. rigida) were collected on 137 

the same date at Viana do Castelo (North of Portugal, 41°41'44"N, 8°51'2"W), and were 138 

later separated by hand in the laboratory. To select our experimental gradient of 139 

temperatures, we registered water temperature from the sampling location through two 140 

continuous temperature data loggers (Tidbit V2 Onset HOBO®) installed at two mid-141 

shore rockpools, during the month of August, 2013 (date of this study). Daily average 142 

temperature in the seawater of these rockpools ranged from 14.96 ± 0.72 ºC to 17.80 ± 143 

2.11 ºC (mean ± SD) depending on night/day phase, with 13.28 ºC and 25.23 ºC 144 

recorded as the absolute minimum and maximum values, respectively. This large 145 
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gradient of temperatures in rock pools from this region results from a combination of 146 

frequent summer upwelling events (Lemos and Pires, 2004), and prolonged exposure to 147 

the sun without water exchange during low tides. As we were interested in investigating 148 

realistic interactions between pH and temperature, CO2 concentrations followed the 149 

“business-as-usual” predicted scenario for 2100 (IPCC, 2013) and mean experimental 150 

temperatures were chosen within the thermal limits of G. umbilicalis (Evans 1948), U. 151 

rigida (Steffensen 1976) and M. palmata (Obenat et al. 2006). We used adult 152 

individuals of amphipods (0.96 ± 0.19 cm, mean length measured from the tip of the 153 

head to the telson) and gastropods (1.05 ± 0.18 cm, mean length measured from the tip 154 

of the operculum to the furthest point in the horizontal plane). 155 

 156 

 Experimental mesocosm setting  157 

Experimental mesocosm (closed system) consisted of eight transparent PVC tanks 158 

(approx. 100 L, 50 x 50 x 40 cm, hereafter referred as treatment tanks) filled with 159 

seawater and subjected to eight crossed treatment combinations of two CO2 levels: ~380 160 

± 30 µatm (ambient) and ~830 ± 45 µatm (increased), and four temperature levels 161 

(mean ± SD, gradient): 13.5 ± 2.0 ºC (low), 16.1 ± 2.0 ºC (midlow), 19.9 ± 3.0 ºC 162 

(midhigh), and 22.1 ± 2.0 ºC (high) (see Figure S1). As mean rock pool temperature 163 

was approximately 16 ºC (see also Cacabelos et al. 2013 for confirmation of similar 164 

values), midlow treatment was acknowledged as mean natural temperature conditions. 165 

Temperature was controlled through titanium aquarium heaters, maintained and 166 

adjusted by AT Control devices (Aqua Medic®). Seawater pH was maintained by 167 

manipulating seawater carbonate chemistry, constantly monitored and registered with 168 

Aqua Medic pH electrodes. Each treatment tank (n = 8) connected to a separated PVC 169 

header tank (100 L of capacity, n = 8), where the incorporation of enriched CO2 / 170 
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normal air was performed. To adjust pH, a pH-stat system (Aqua Medic®, AT Control) 171 

injected certified CO2-enriched air (Air Liquide) through solenoid valves to down 172 

regulate pH, and normal air to up regulate pH. Seawater carbonate chemistry was 173 

calculated based on, temperature, salinity, total alkalinity (assessed 174 

spectrophotometrically at 595 nm) and pHt measurements (Sarazin et al., 1999) (Table 175 

S1). As such, pHt was quantified through a Metrohm pH meter (826 pH mobile, 176 

Metrohm, Filderstadt, Germany) connected to a glass electrode (Schott IoLine, SI 177 

analytics, ± 0.001), which was calibrated with 2-aminopyridine-HCl (AMP) and TRIS-178 

HCl (TRIS) seawater buffers following Dickson et al. (2007). Total carbonate and pCO2 179 

(Table S1) were calculated using CO2SYS software (Lewis and Wallace, 1998), with 180 

equilibrium constants (Mehrbach et al., 1973) refitted by Dickson and Millero (1987). 181 

Abiotic conditions between header and treatment tanks were secured using submersible 182 

pumps (570 l h-1), with water permanently exchanged to maintain pH treatments, using 183 

one submersible pump (3000 l h-1) and gravitational force. Within each treatment tank, 184 

water exchange was enhanced through water tubing (smaller submersible pump 570 l h-185 

1) that assured all abiotic variable conditions were similar between cylinders. 186 

Each treatment tank contained mechanical and biological filtering, as well as twelve 187 

transparent cylinders (D 0.33 x H 0.10 m, ~2 l, 0.085 m2 cylinder base area), i.e. 188 

experimental units, consisting of four different grazer levels (G: Gibbula umbilicalis, 189 

M: Melita palmata, G+M: both species together, and C: controls with no grazers, n = 3) 190 

interspersed through the treatment tank (Figure S1). The top of each cylinder was 191 

covered with a 1.0 mm mesh to avoid animals from escaping, while still enabling water 192 

circulation and light entry. Nutrients (1 ml of 42.50 g l-1 NaNO3 solution and 1 ml of 193 

10.75 g l-1 Na2HPO4 solution per liter of seawater) were added to each tank every two 194 

days, and water was renewed manually when salinity increased to 36 (35.5 ± 1.0 PSU; 195 
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mean ± SD, n = 8). Temperature, pH and salinity were monitored three times a day with 196 

the use of a data-logger. The experimental setup was placed inside a shadow greenhouse 197 

under natural light and photoperiod, with consequently reduced incident light inside, 198 

mimicking commonly found subsaturating light conditions on rocky pools (Guidone et 199 

al., 2012; O’Connor, 2009). 200 

 201 

Experiment I: Warming and acidification effects on grazers consumption rates  202 

We performed a two-day (i.e. 48h) experiment to assess grazer consumption rates for 203 

mono-specific and mixed grazer combinations (O’Connor, 2009). This experiment was 204 

preceded by a 24h algae-free period for grazer acclimatization (algae were acclimated in 205 

separate cylinders) to avoid the influence of past diet and ensure algae consumption 206 

during the experiment (Swanson & Fox, 2007). We used 3-replicated cylinders with 207 

four levels of grazers (density in cylinder = 0.009 ind / m2): G. umbilicalis (hereafter G, 208 

n = 10), M. palmata (hereafter M, n = 10), both species together (hereafter G+M, n = 5 209 

+ 5), and control (hereafter C, no grazers). At the end of the 24 hour acclimatization 210 

period, algae were spun 25 revolutions in a salad spinner to remove excess water and 211 

~3.015 ± 0.041 g (mean ± SD, density in cylinder = 0.028 g algae / m2) of algal blotted 212 

wet weight (bww) were inserted in each cylinder. While in the cylinders, algae were 213 

strapped to weights and left swinging inside the cylinder, mimicking natural rock pool 214 

conditions. After the 48 hour grazing trial, portions were removed, blotted and weighted 215 

again as above. Dead animals were recorded at the end of the experiment. 216 

 217 

Experiment II: Warming and acidification effects on interaction strength 218 

We performed a longer (seven-day or 168 hours) experiment with new animals and 219 

algal portions to assess differences in per capita macroalgae-herbivore interaction 220 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 
 

strength, i.e. individual grazer pressure per algal biomass growth ratio. A 24h period of 221 

acclimatization with algae was performed (Eklöf et al., 2015), and at the beginning of 222 

the experiment, algae were added, mimicking natural conditions where seaweed is 223 

abundant (Cacabelos et al., 2013; O’Connor, 2009). Three-replicated cylinders were 224 

used, with 6 grazers for each level of grazer treatment (density in cylinder = 0.014 ind / 225 

m2): G (n = 6), M (n = 6), G+M (n = 3 + 3) and control (C, no grazers). Grazer numbers 226 

were reduced to avoid excessive competition for habitat and food. At the beginning of 227 

the experiment, ~7.030 ± 0.025 g (mean ± SD, density in cylinder = 0.012 g algae / m2) 228 

of blotted wet weight portions of algae were strapped to weights and inserted in each 229 

cylinder. After seven days, algae were retrieved, blotted and weighted. The number of 230 

dead animals was recorded at the end of the experiment.  231 

 232 

Data Analysis 233 

Survival rates in both experiments were assessed according to the number of living 234 

G. umbilicalis and M. palmata individuals (and the sum of both in the case of G+M 235 

treatment) present at the end of each experiment, and transformed into survival rate (%) 236 

per cylinder. Changes in algal biomass were estimated through the difference of initial 237 

and final values of algal wet biomass in experiments. Consumption rates in Experiment 238 

I was calculated using the following formula based on Taylor and Brown (2006): 239 

 240 

Consumption = ( Ti * ( Cf / Ci ) - Tf  ) / (nbio * t), 241 

 242 

Where Ti is the initial algal bww, Tf is the final algal bww, Ci is the initial control 243 

algal bww, Cf is the final control algal bww, nbio is the added biomass of living grazers 244 

in each cylinder at the end of the experiment and t is the time elapsed in the experiment 245 
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(2 days). Thus, consumption rates are expressed in grams of algae consumed per 246 

invertebrate biomass per day. Biomass was extrapolated from a referenced length-247 

weight regression based on M. palmata individuals’ total length (Grilo et al., 2009; 248 

Pardal et al., 2002). Likewise, G. umbilicalis biomass was extrapolated by measuring 249 

the longest vertical axis and fitted in a referenced length-weight regression (Robinson et 250 

al., 2010).  251 

In Experiment II, in addition to survival rates and changes in algal biomass, 252 

alterations in community dynamics, i.e. grazing pressure and simultaneous macroalgal 253 

growth, were also analyzed. To assess the strength of macroalgae-herbivore interaction 254 

we used the Dynamic Index (Berlow et al., 1999; Mertens et al., 2015; O’Connor, 2009; 255 

Wootton and Emmerson, 2005) modified from Wootton (1997), with the following 256 

formula: 257 

 258 

DI = ln ( N / D ) / ( n * t ), 259 

 260 

where DI is the Dynamic Index, N is algal wet biomass with grazers, D is the algal 261 

wet biomass on treatment without grazers, n is the number of living grazers in the 262 

cylinder, and t is the known period of time elapsed (i.e. seven days). This index 263 

measures interaction strength, i.e. the absolute value of daily per capita interaction 264 

strength, accounting for differences in algal growth rates with and without herbivores 265 

(O’Connor 2009). Negative interaction strength values implicate that one species 266 

reduces the abundance of the other species; therefore, lower values indicate stronger 267 

interactions (i.e. high grazer pressure). This index translates survival rates and metabolic 268 

alterations provoked by climate change stressors into an ecological response (O’Connor 269 

2009). Compared to other methods, DI does not assume equilibrium between algae and 270 
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grazers, which is convenient for relatively short experiments as ours (Berlow et al., 271 

1999).  272 

Changes in survival rates, algal biomass, consumption rates and DI were analyzed 273 

separately through a distance-based permutational multivariate analysis of variance 274 

(PERMANOVA, Anderson 2001). We calculated distance resemblance matrices using 275 

Euclidean dissimilarity measures based on untransformed data. PERMANOVA was run 276 

with 4999 permutations to obtain p values under unrestricted permutation of raw data 277 

(Anderson 2001), using CO2 (2 levels; ambient and increased), temperature (4 levels: 278 

low, midlow, midhigh and high) and grazers (4 levels: G, M, G+M and C) as fixed 279 

orthogonal factors (n = 3). The permutational approach was used because the data were 280 

non-normally distributed even after transformations (Wernberg et al., 2008). Only 281 

significant effects (p < 0.05) were further investigated through a series of pair-wise 282 

comparisons using the appropriate terms in the model (Anderson et al. 2008). All the 283 

multivariate analyses were performed with PRIMER 6 & PERMANOVA+ package. 284 

Results 285 

 286 

Experiment I: Warming and acidification on grazer consumption rates 287 

 288 

After 48h, survival rates differed significantly depending on temperature and grazer 289 

treatments (Table 1). Specifically, survival rates decreased from lower (13.5 ºC and 16.1 290 

ºC) to higher (19.9 ºC and 22.1 ºC) temperatures (p < 0.001, Figure 1, see Table S2 for 291 

pair-wise comparisons). Concerning grazer treatments, survival rates were 292 

comparatively higher in G (90%), and lower in M (~40%), while G+M registered 293 

intermediate survival rates (~70 %) (Figure 1, Table S2).  294 
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Algal biomass was significantly altered by temperature and the interaction between 295 

CO2 and grazers (Table 1, Figure 2). Thus, at high temperature (22.1 ºC) algal biomass 296 

loss was reduced compared to biomass loss reported for the two lower temperature 297 

levels, 13.5 ºC and 16.1 º C (Figure 2a, Table S3). G registered higher biomass loss then 298 

M, and increased CO2 amplified these effects (Figure 2b, Table S3). In grazer control 299 

treatments, i.e. C, algal biomass increased: 0.1 g (from initial 3 g) per day ≃ 3 % per 300 

day. 301 

Consumption rates were significantly affected by the triple interaction between CO2, 302 

temperature and grazer (Table 1). Multiple pairwise comparisons revealed that 303 

consumption rates in M were always higher than in G and G+M, regardless of 304 

temperature or CO2 (Figure 3, Table S4). Comparing CO2 treatments, at 13.5 ºC, G+M 305 

displayed lower consumption rates in increased CO2 (Figure 3, Table S4). Under 306 

ambient CO2 (Figure 3a), G and G+M consumption rates dropped across the 307 

temperature gradient, whereas M consumption rates increased (Figure 3, Table S4). 308 

Lastly, under increased CO2, temperature did not different consumption rates in any 309 

grazer treatment (Figure 3b, Table S4).  310 

 311 

Experiment II: Warming and acidification effects on interaction strength 312 

 313 

After 7 days (i.e. 168h), survival rates were significantly affected by variations in 314 

CO2 and the interaction between temperature and grazers (Table 2). Lower survival 315 

rates were reported under increased CO2 (SNK test, p < 0.001, Figure 4a). Moreover, 316 

survival rates also dropped with increasing temperature in all grazer treatments (Figure 317 

4b, Table S5). Specifically, all grazer treatments showed higher survival rates at 13.5 ºC 318 
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than at 19.9 ºC and 22.1 ºC. Comparing grazer treatments, G generally showed 319 

significantly higher survival rates (Figure 4b, Table S5). 320 

Algal biomass in Experiment II was significantly affected by a triple interaction of 321 

CO2, temperature and grazer (Table 2, Figure 5). Temperature and CO2 showed no 322 

effect on grazer control treatments, which consistently revealed a ~20 % increase (from 323 

initial 7 g, 0.2g increase per day ≃ 3 % per day; 3% per day * 7 days ≃ 20 %) in algal 324 

biomass at the end of 7 days (Table S6). Algal biomass loss peaked at 19.9 ºC under 325 

ambient CO2, while increased CO2 led to higher algal biomass loss at 16.1 ºC (Table 326 

S6). Moreover, extreme temperatures (13.5 ºC and 22.1 ºC) consistently registered algal 327 

biomass growth, in contrast to algal loss verified in intermediate temperatures (16.1 ºC 328 

and 19.9 ºC). Under ambient CO2 and 13.5 ºC, Ulva rigida growth was higher in M 329 

compared to G+M (SNK test, p < 0.05, Table S6).  330 

The Dynamic Index (DI) was interactively affected by CO2 and temperature  (Table 331 

2, Figure 6). Thus, under increased CO2 a temperature increase from 13.5 ºC to 16.1 ºC 332 

led to an overall DI minimum, i.e. largest top-down control (SNK test, p < 0.01, Table 333 

S7), while at ambient CO2 no significant effects in DI were detected (Figure 6). Under 334 

increased CO2, further temperature increase (16.1 ºC to 19.9 ºC and 22.1 ºC) led to a 335 

consecutive increase in DI values, i.e. a reduction of top-down interaction strength 336 

(Figure 6, Table S7). Conversely, under ambient CO2, the strongest top-down 337 

interaction (i.e. low DI, high grazer pressure) occurred at 19.9 ºC. Once again this 338 

significant trend was reverted at 22.1 ºC, and DI values indicating bottom-up control 339 

were registered (SNK test, p < 0.001; Figure 6, Table S7). No grazer treatment effects 340 

were observed in the DI index (Table 2).  341 

Discussion 342 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 
 

Our results showed that grazers’ survival and consumption rates were differently 343 

affected by warming and acidification. Additionally, temperature showed immediate 344 

effects (Experiment I, two days) on survival rates, whereas acidification-related effects 345 

emerged later on (Experiment II, seven days). When co-occurring, stressor impacts were 346 

additive and independent, hence no interactive climate stressor effects were found on 347 

survival rates. Increased CO2, i.e. hypercapnia-linked, mortality is known to occur as a 348 

consequence of prolonged animal inactivity and/or starvation due to metabolic 349 

suppression, which explains why CO2 effects were only detected after seven days 350 

(Kurihara et al., 2008; Langenbuch and Pörtner, 2004; Spicer et al., 2007). Thus, these 351 

results strengthen the claim that warming is the strongest stressor, outweighing 352 

acidification effects on animal survival (see Wernberg et al. 2012 for a review). the 353 

relatively high mortality verified was likely caused by lower animal physiological 354 

tolerances to fixed stressor (e.g. temperature) levels in comparison to variable stressor 355 

levels (Benedetti-Cecchi et al., 2006; Vasseur et al., 2014). Contrary to natural 356 

fluctuating conditions (i.e. where stressor levels vary over time), our experimental 357 

conditions comprised of fixed stressor treatments (i.e. constant thermal and pH 358 

conditions with low intra-treatment variance), which likely contributed to increased 359 

physiological stress and mortality (Stillman, 2002).  360 

Herbivore performance analysis also revealed striking differences between both 361 

grazers tested. Molluscs are usually considered more sensitive to warming, and 362 

especially acidification, than crustaceans (Harvey et al., 2013). In theory, due to 363 

naturally higher basal metabolism (see Peck et al., 2009), M. palmata may be closer to 364 

its metabolic peak (i.e. “optimal” level) than G. umbilicalis, thus overcoming the 365 

optimal metabolic threshold with shorter increases in stressors. Consumption rates as 366 

impacts on algal biomass were similar to those reported by Giannotti and McGlathery 367 
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(2001) for gastropod (around 0.01-0.02 grams of algae per individual and day) and by 368 

Cruz-Rivera and Hay (2001) for amphipods (around 0.004-0.01 grams of algae per 369 

individual and day) grazing on Ulva sp. Thus, G. umbilicalis showed higher impact on 370 

algae biomass, with natural temperature (16.1 ºC) and increased CO2 amplifying algal 371 

biomass loss. Nevertheless, we found that M. palmata is actually a stronger grazer per 372 

biomass than G. umbilicalis, likely due higher metabolic rates. G. umbilicalis inherently 373 

higher biomass also mathematically justifies why consumption rates per biomass in 374 

mixed species treatments closely matched those reported for G. umbilicalis. Thus, 375 

according to our results, increases in temperature (but also in CO2) will benifit G. 376 

umbilicalis by lowering M. palmata survival, while increasing grazing pressure on algal 377 

biomass, as predicted by the metabolic theory of ecology (MTE; Kingsolver, 2009). 378 

 Concerning abiotic effects on seaweed biomass, our results are in line with previous 379 

research, reporting no acidification effects on U. rigida growth (Rautenberger et al., 380 

2015), but differ from the previously reported temperature dependence for the genus 381 

Ulva (Steffensen, 1976). In our study, controls (only algae, no grazers) showed similar 382 

algal biomass increase under warming and acidification conditions, in both experiments 383 

(~3 % growth per day). As such, mean algal growth rate reported here is lower than 384 

expected under perfect light intensity laboratorial conditions (20 % growth per day in 385 

Rautenberger et al., 2015). However, it is similar to results verified in field experiments, 386 

as well as for laboratorial settings mimicking subsaturating light conditions (e.g. ~5 % 387 

growth per day in Guidone et al., 2012; see also O'Connor, 2009). We suggest that the 388 

lack of algal response to climate stressors and the algal growth rates registered here 389 

were caused by comparatively reduced solar irradiation (Rautenberger et al., 2015). This 390 

reduction was a direct consequence of the greenhouse set-up housing, further amplified 391 

perhaps by the use of a 1 mm mesh on the experimental cylinders (to prevent grazers 392 
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from escaping). Moreover, warming-related algal growth may have been potentially 393 

concealed by undetected temperature-induced algal decomposition (Schiel et al., 2004). 394 

After seven days (Experiment II), algal biomass changes in treatments including 395 

grazers showed the expected profile across the temperature gradient (Kingsolver, 2009; 396 

Mertens et al., 2015). However, maximum algal biomass loss also depended on CO2 397 

conditions. Although interaction strength may increase with higher temperature and 398 

CO2, as shown by previous studies (Alsterberg et al., 2013; O’Connor, 2009), the 399 

response patterns are indeed more complex than a direct linear antagonistic or 400 

synergistic effect (Ghedini et al., 2015a). These non-linear CO2-dependent responses to 401 

temperature gradients were clearly displayed in the dynamic index profiles. As it is, 402 

grazing pressure increased over increasing temperature, until survival rates decreased to 403 

the point of soothing grazer pressure on macroalgae (i.e. overcoming the community 404 

stability threshold), which significantly weakened macroalgae-herbivore interactions, 405 

and ultimately shifted community dominance. As expected, herbivores were shown to 406 

be more susceptible to changes in temperature than primary producers (López-Urrutia et 407 

al., 2006). Moreover, increased CO2 stimulated community response by accelerating the 408 

interaction strength profile across warming scenarios. Thus, as predicted by Ghedini et 409 

al. (2015a), the occurrence of simultaneous stressors lead to a bottom-up controlled 410 

community earlier in the temperature gradient. 411 

The observed warming and acidification effects were consistent in the three different 412 

combinations where grazers were used, i.e. previously detected grazer identity effects 413 

for other parameters were concealed in the dynamic index analyses. Thus, our results 414 

did not support the claim that grazing activity by different grazer species would modify 415 

the strength of top-down control on seaweeds (O’Connor 2009). Most likely our 416 

election of the herbivores, without a clearly defined stronger grazer (i.e. M. palmata was 417 
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the stronger grazer per biomass, but produced a comparatively smaller impact on algal 418 

biomass, and was also the most sensitive to the climate stressors) was the main cause 419 

for the verified grazer homogeneity. Moreover, our experimental set-ups ran through 420 

relatively short time spans (up to seven days), so extrapolating or generalizing 421 

conclusions to natural systems may be inaccurate. However, it is important to note that 422 

studies that were prolonged for longer periods of time (two to five weeks), generally led 423 

to stronger interactions between climate change stressors (e.g. Alsterberg et al., 2013; 424 

Christensen et al., 2011; Vasseur et al., 2014). Furthermore, the strength of macroalgal-425 

herbivore interactions is reported to increase from 11 to 17 days (Ghedini et al., 2015b; 426 

Mertens et al., 2015; O’Connor, 2009). Therefore, we suggest that grazer identity 427 

effects may still arise in the future ocean as a consequence of starkly different survival 428 

and consumption rates.  429 

Future climate change is expected to modify the fundamental top-down control 430 

exerted by herbivore species feeding on macroalgae (Eklöf et al. 2012, this study). 431 

Warming and acidification can interact and play a major role in differentially driving 432 

rocky intertidal communities’ structure and functioning. Extreme increases in both 433 

stressors, or higher frequencies of extreme weather events (Kroeker et al., 2011), can 434 

largely affect the survival rates of typical grazers. Taking advantage of lower thermal 435 

sensitivity, opportunistic algal species like U. rigida might grow freely, disrupt 436 

ecosystem equilibrium, and promote ecological shifting from top-down to bottom-up 437 

regulated communities (Connell and Russell, 2010; Veteli et al., 2002). Conversely, 438 

moderate increases in acidification or warming might lead to higher grazing pressure  as 439 

long as these stressors do not exceed metabolic grazers’ thermal and acid-base limits 440 

(Alsterberg et al., 2013; O’Connor, 2009), and lower algal biomass as a consequence of 441 

stronger top-down control (i.e. increased interaction strength). Thus, understanding 442 
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whether macroalgal and herbivore responses to different climate change stressors are 443 

synchronous is fundamental to assess the future strength of top-down control in marine 444 

systems. We also suggest that the characteristics and composition of intertidal grazer 445 

assemblages may play a relevant role in macroalgae-herbivore interactions, inducing 446 

differences in grazing pressure on macroalgae, mainly due to species-specific 447 

differences in survival and algal consumption rates. Longer exposures in mesocosm and 448 

field experiments focusing on the combined effects of different climate stressor 449 

gradients, and using diverse assemblages of herbivores and macroalgal species, are 450 

needed to underpin forecasts on how macroalgae-herbivore interactions will be affected 451 

by global change in the future. 452 
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Figures & Tables 685 

 686 

Figure 1. Survival rates of G. umbilicalis and M. palmata individuals present (%, mean 687 

+SE) at the end of Experiment I. Data is displayed according to significant factors (non-688 

significant factor are averaged, see Table 1): a) temperature (low: 13.5 ºC, midlow: 16.5 689 

ºC, midhigh: 19.9 ºC, high: 22.1 ºC), b) grazer treatments (G: G. umbilicalis, M: M. 690 

palmata, G + M: G. umbilicalis + M. palmata. Different letters represent significant 691 

differences. 692 

 693 

Figure 2. Changes in mean (+ SE) algal biomass (U. rigida g, blot wet weight per day) 694 

in the end of Experiment I. Data is displayed relative to significant factors (non-695 

interactive factors are averaged, see Table 1): a) temperature (low: 13.5 ºC, midlow: 696 

16.5 ºC, midhigh: 19.9 ºC, high: 22.1 ºC), and b) CO2 (ambient CO2: 380 µatm, 697 

increased CO2: 830 µatm) and grazer treatments (G: G. umbilicalis, M: M. palmata, G + 698 

M: G. umbilicalis + M. palmata, C: No grazers). Different letters represent significant 699 

differences. 700 

 701 

Figure 3. Effects on mean (+SE) herbivore consumption rates in the end of Experiment 702 

I. Data is displayed relative to significant factors (non-interactive factors are averaged, 703 

see Table 1): a) grazer (G: G. umbilicalis, M: M. palmata, G + M: G. umbilicalis + M. 704 

palmata) and CO2 treatments (ambient CO2: 380 µatm, increased CO2: 830 µatm), and 705 

b) grazer (G: G. umbilicalis, M: M. palmata, G + M: G. umbilicalis + M. palmata) and 706 

temperature treatments (low: 13.5 ºC, midlow: 16.5 ºC, midhigh: 19.9 ºC, high: 22.1 707 

ºC). Results expressed as grams of algae (algae biomass) per milligrams of grazers 708 
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(grazer biomass) contained in the treatment, per day. Different letters represent 709 

significant differences. 710 

 711 

Figure 4. Survival rates of G. umbilicalis and M. palmata individuals present (%, mean 712 

+ SE) at the end of Experiment II. Data is displayed relative to significant factors (non-713 

interactive factors are averaged, see Table 2): a) CO2 (ambient CO2: 380 µatm, 714 

increased CO2: 830 µatm), and b) temperature (low: 13.5 ºC, midlow: 16.5 ºC, midhigh: 715 

19.9 ºC, high: 22.1 ºC) and grazer treatments (G: G. umbilicalis, M: M. palmata, G + M: 716 

G.umbilicalis + M. palmata). Different letters represent significant differences. 717 

 718 

Figure 5. Effects of temperature (low: 13.5 ºC, midlow: 16.5 ºC, midhigh: 19.9 ºC, 719 

high: 22.1 ºC) and grazer treatments (G: G. umbilicalis, M: M. palmata, G + M: 720 

G.umbilicalis + M. palmata, C: No grazers) on mean (± SE) algal growth (U. lactuca g, 721 

blot wet weight) at a) ambient CO2 (380 µatm) and b) increased CO2 (830 µatm) in the 722 

end of Experiment II. Different letters represent significant differences. 723 

 724 

Figure 6. Effects of temperature (low: 13.5 ºC, midlow: 16.5 ºC, midhigh: 19.9 ºC, 725 

high: 22.1 ºC) and CO2 treatments (ambient CO2: 380 µatm, increased CO2: 830 µatm) 726 

on the Dynamic Index (DI, mean ± SE) as a strength measure of the herbivore-727 

macroalgae interaction (Experiment II). Data is displayed according to significant 728 

factors (non-significant factor is averaged, see Table 2). Different letters and numbers 729 

represent significant differences. 730 

 731 

 732 
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Table 1. Summary of PERMANOVA for the effects of temperature (T, 4 levels: low, midlow, midhigh, high), CO2 (2 levels: ambient and 733 

increased), and grazer (G, 3 levels: G. umbilicalis, M. palmata, G. umbilicalis + M. palmata) treatments on grazer survival and consumption rates 734 

for Experiment I. DF: Degrees of freedom, MS: Mean squares. Significant values are in bold (p < 0.05). 735 

 736 

 Grazer survival rate Algal biomass Consumption rate 

Source of variation DF MS F P (perm) DF MS F P (perm) DF MS F P (perm) 

CO2 1 7133.5 14.911 0.0004 1 0.1700 11.852 0.0018 1 0.0002 3.7689 0.0596 

T 3 13368 27.944 0.0002 3 0.0410 2.8572 0.0470 3 0.0001 1.2986 0.2862 

G 2 3059.4 6.3952 0.0052 3 0.8490 59.190 0.0002 2 0.0102 241.45 0.0002 

CO2 x T 3 538.84 1.1263 0.3466 3 0.0285 1.9904 0.1318 3 0.0001 2.4633 0.0762 

CO2 x G 2 397.38 0.8307 0.4386 3 0.0497 3.4651 0.0256 2 0.0001 1.5419 0.2124 

T x G 6 1315.6 2.7500 0.0242 9 0.0226 1.5745 0.1414 6 0.0001 2.0158 0.0814 

CO2 x T x G 6 145.32 0.3038 0.9324 9 0.0110 0.7697 0.6466 6 0.0001 3.2616 0.0106 

Residuals 48 478.40 64 0.0143                  48 0.0000                  

Total 71 95    71    

  737 
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Table 2. Summary of PERMANOVA for the effects of temperature (T, 4 levels: low, midlow, midhigh, high), CO2 (2 levels: ambient and 738 

increased), and grazer (3 levels: G. umbilicalis, M. palmata, G. umbilicalis + M. palmata) treatments on grazer survival rate, algal growth and 739 

Dynamic Index for Experiment II. DF: Degrees of freedom, MS: Mean squares. Significant values are in bold (p < 0.05). 740 

 741 

 Grazer survival rate Algal biomass Dynamic Index 

Source of variation DF MS F P (perm) DF MS F P (perm) DF MS F P (perm) 

CO2 1 22.22 0.0465 0.8202 1 0.0010 0.1223 0.7204 1 0.3155 8.0122 0.0042 

T 3 4544.4 9.5116 0.0002 3 0.4468 52.9910 0.0002 3 0.8288 21.046 0.0002 

G 2 16289 34.093 0.0002 3 0.2097 24.8660 0.0002 2 0.0346 0.8784 0.4376 

CO2 x T 3 277.78 0.5814 0.6246 3 0.2306 27.3470 0.0002 3 0.8202 20.826 0.0002 

CO2 x G 2 72.222 0.1511 0.8544 3 0.0316 3.7510 0.0154 2 0.0499 1.2681 0.2886 

T x G 6 833.33 1.7442 0.1294 9 0.0546 6.4809 0.0002 6 0.0325 0.8250 0.5646 

CO2 x T x G 6 394.44 0.8256 0.547 9 0.0447 5.2981 0.0006 6 0.0445 1.1306 0.3576 

Residuals 48 477.78 
  

64 0.0084                  48 0.0394   

Total 71 
   

95    71    

 742 
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Highlights 

• Warming and acidification elicited negative effects in grazer’s survival rates. 

• Macroalgae-herbivore interaction strength was shaped by temperature gradient. 

• Acidification shifts thermal optimal metabolic threshold to lower temperatures. 

• Grazer identity may modulate macroalgae-herbivore interactions. 


