476 research outputs found

    Light trapping within the grooves of 1D diffraction gratings under monochromatic and sunlight illumination

    Full text link
    The Rayleigh-Modal method is used to calculate the electromagnetic field within the grooves of a perfectly conducting, rectangular-shaped 1D diffraction grating. An \emph{enhancement coefficient} (η\eta) is introduced in order to quantify such an energy concentration. Accordingly, η>\eta >1 means that the amount of electromagnetic energy present within the grooves is larger than that one will have, over the same volume, if the diffraction grating is replaced by a perfectly reflecting mirror. The results in this paper show that η\eta can be as large as several decades at certain, often narrow, ranges of wavelengths. However, it reduces to approximately 20% under sunlight illumination. In this latter case, such values are achieved when the \textit{optical spacing} between the grooves dndn is greater than 500 nm, where dd is the groove spacing and nn is the refractive index of the substance within the grooves. For dndn smaller than 500 nm the enhancement coefficient turns negligibly small.Comment: This paper contains 11 pages and 4 figures, and will be published elsewher

    Microcredits: indicators and socio-economic impact

    Get PDF
    Treball Final de Grau en Finances i Comptabilitat. Codi: FC1049. Curs: 2017/2018Poverty reduction plans have included microcredits as an important tool to improve the social and economic development of a region. This project will try to explain what impact indicators are most commonly used in the field of microcredits. Next, the characteristics of those indicators will be analysed and also their usefulness in every area of measurement. It will also be observed, through several microcredit programmes impact studies carried out in Rwanda, Brazil and Chile and Malaysia, the indicators that have been used in these programmes, what aspect each indicator tries to measure and, finally, whether they have results with sufficient empirical evidence on its usefulness in the fight against poverty. Finally, the cases which have been analysed will be compared in order to draw enough conclusions to propose a simple model that enables to standardize the way of measuring the impact of micro credit programmes through the use of common indicators

    Optimization approaches for robot trajectory planning

    Get PDF
    [EN] The development of optimal trajectory planning algorithms for autonomous robots is a key issue in order to efficiently perform the robot tasks. This problem is hampered by the complex environment regarding the kinematics and dynamics of robots with several arms and/or degrees of freedom (dof), the design of collision-free trajectories and the physical limitations of the robots. This paper presents a review about the existing robot motion planning techniques and discusses their pros and cons regarding completeness, optimality, efficiency, accuracy, smoothness, stability, safety and scalability.Llopis-Albert, C.; Rubio, F.; Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences. 5(1):1-16. doi:10.4995/muse.2018.9867SWORD1165

    Designing Efficient Material Handling Systems Via Automated Guided Vehicles (AGVs)

    Full text link
    [EN] The designing of an efficient warehouse management system is a key factor to improve productivity and reduce costs. The use of Automated Guided Vehicles (AVGs) in Material Handling Systems (MHS) and Flexible Manufacturing Systems (FMS) can help to that purpose. This paper is intended to provide insight regarding the technical and financial suitability of the implementation of a fleet of AGVs. This is carried out by means of a fuzzy set/qualitative comparative analysis (fsQCA) by measuring the level of satisfaction of managerial decision makers.Llopis-Albert, C.; Rubio, F.; Valero, F. (2018). Designing Efficient Material Handling Systems Via Automated Guided Vehicles (AGVs). Multidisciplinary Journal for Education, Social and Technological Sciences. 5(2):97-105. doi:10.4995/muse.2018.10722SWORD9710552Berbegal-Mirabent, J.; Llopis-Albert, C. (2015). Applications of Fuzzy Logic for Determining the Driving Forces in Collaborative Research Contracts. J. Bus. Res., 69 (4), 1446-1451. https://doi.org/10.1016/j.jbusres.2015.10.123Biçer, I., Seifert, R.W., (2017). Optimal Dynamic Order Scheduling under Capacity Constraints Given Demand-Forecast Evolution. Production and Operations Management 26(12), 2266-2286. https://doi.org/10.1111/poms.12759Fazlollahtabar, H., Saidi-Mehrabad, M. (2015). Autonomous Guided Vehicles: Methods and Models for Optimal Path Planning. Springer. https://doi.org/10.1007/978-3-319-14747-5 ISBN 978-3-319-14747-5.Gourgand, M., Sun, X.C., Tchernev, N., 1995. Choice of the guide path layout for an AGV based material handling system. Emerging Technologies and Factory Automation, 1995. ETFA '95, Proceedings., 1995 INRIA/IEEE Symposium on. https://doi.org/10.1109/ETFA.1995.496688Llopis-Albert, C., Rubio, F., Valero, F. (2015). Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research 68, 1429-1431. https://doi.org/10.1016/j.jbusres.2015.01.027Llopis-Albert, C., Palacios-Marqués, D. (2016). Applied Mathematical Problems in Engineering. Multidisciplinary Journal for Education 3(2), 1-14. https://doi.org/10.4995/muse.2016.6679Llopis-Albert, C., Merigó, J.M., Xu, Y., Liao, H. (2017). Application of Fuzzy Set/Qualitative Comparative Analysis to Public Participation Projects in Support of the EU Water Framework Directive. Water Environment Research, 89.Mendel, J. M.; Korjani, M. M. (2012). Charles Ragin's Fuzzy Set Qualitative Comparative Analysis (fsQCA) Used for Linguistic Summarizations. Inf. Sci., 202, 1-23. https://doi.org/10.1016/j.ins.2012.02.039Mendel, J. M., Korjani, M. M. (2013). Theoretical Aspects of Fuzzy Set Qualitative Comparative Analysis (fsQCA). Inf. Sci., 237, 137-161. https://doi.org/10.1016/j.ins.2013.02.048Meyer, A. D., Tsui, A.S. and Hinings, C.R. (1993). Configurational approaches to organizational analysis. Academy of Management Journal, 36(6), 1175-1195.Quine, W. V. (1952). The problem of simplifying truth functions. The American Mathematical Monthly, 59(8), 521-531. https://doi.org/10.1080/00029890.1952.11988183Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L. (2013). A review of dynamic vehicle routing problems. European Journal of Operational Research 225, 1-11. https://doi.org/10.1016/j.ejor.2012.08.015Ragin, C. C. (2008). Redesigning social inquiry: Fuzzy sets and beyond. Chicago: University of Chicago Press. https://doi.org/10.7208/chicago/9780226702797.001.0001Sarker, B.R., Gurav, S.S. (2005). Route planning for automated guided vehicles in a manufacturing facility. International Journal of Production Research 43(21), 4659-4683. https://doi.org/10.1080/0020754050014080

    Methodology to evaluate transversal competences in the master's degree in industrial engineering based on a system of rubrics and indicators

    Full text link
    [EN] This paper presents a methodology to evaluate transversal competences in the context of the subject “Design and application of industrial equipment” in the Master's Degree in Industrial Engineering at Universitat Politècnica de València (Spain). The competency-based education implies several activities, such as a project-based learning that must be eventually defended in public by students in groups. Evidence of learning is collected based on a well-defined system of rubrics and indicators, which are known in advance by students. We have observed that the use of such techniques improves the students learning on the contents of the subject, allows to acquire the transversal competences related to the analysis and problem solving, and enhances the ability to understand concepts intuitively. Moreover, results clearly show a positive influence on the use of such tools for improving the professional and ethical commitment to the issues raised.Llopis-Albert, C.; Rubio, F. (2021). Methodology to evaluate transversal competences in the master's degree in industrial engineering based on a system of rubrics and indicators. Multidisciplinary Journal for Education, Social and Technological Sciences. 8(1):30-44. https://doi.org/10.4995/muse.2021.15244OJS304481Eberle, B. (1996). Scamper: Games for Imagination Development. Prufrock Press Inc. ISBN 978-1-882664-24-5.Llopis-Albert, C., Rubio, F., Valero, F. (2015). Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research, 68 (7), 1429-1431. https://doi.org/10.1016/j.jbusres.2015.01.027Llopis-Albert, C., Rubio, F., Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1-16. https://doi.org/10.4995/muse.2018.9867Llopis-Albert, C., Rubio, F., Valero, F. (2019). Fuzzy-set qualitative comparative analysis applied to the design of a network flow of automated guided vehicles for improving business productivity. Journal of Business Research, 101, 737-742. https://doi.org/10.1016/j.jbusres.2018.12.076Llopis-Albert, C., Rubio, F., Valero, F., Liao, H., Zeng, S. (2019a). Stochastic inverse finite element modeling for characterization of heterogeneous material properties. Materials Research Express, 6(11), 115806. https://doi.org/10.1088/2053-1591/ab4c72Llopis-Albert, C., Valero, F., Mata, V., Pulloquinga, J.L., Zamora-Ortiz, P., Escarabajal, R.J. (2020). Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods. Sustainability, 12(14), 5803. https://doi.org/10.3390/su12145803Llopis-Albert, C., Valero, F., Mata, V., Zamora-Ortiz, P., Escarabajal, R.J., Pulloquinga, J.L. (2020a). Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance. Multidisciplinary Journal for Education, Social and Technological Sciences, 7(1), 113-127. https://doi.org/10.4995/muse.2020.13352Rubio, F., Llopis-Albert, C., Valero, F., Suñer, J.L. (2015). Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots. Mathematical Problems in Engineering, 10 pages. Article ID 931048. https://doi.org/10.1155/2015/931048Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. https://doi.org/10.1016/j.robot.2016.09.008Rubio, F., Llopis-Albert, C. (2019). Viability of using wind turbines for electricity generation in electric vehicles. Multidisciplinary Journal for Education, Social and Technological Sciences, 6(1), 115-126. https://doi.org/10.4995/muse.2019.11743Rubio, F., Valero, F., & Llopis-Albert, C. (2019a). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 172988141983959. https://doi.org/10.1177/1729881419839596Rubio, F., Llopis-Albert, C., Valero, F., Besa, A.J. (2020). Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations. Journal of Business Research 112, 561-566. https://doi.org/10.1016/j.jbusres.2019.10.050UPV, 2020. Proyecto institucional competencias transversales. Universitat Politècnica de València (UPV). Valencia. Spain. https://www.upv.es/entidades/ICE/info/Proyecto_Institucional_CT.pdfValero, F., Rubio, F., Llopis-Albert, C., Cuadrado, J.I. (2017). Influence of the Friction Coefficient on the Trajectory Performance for a Car-Like Robot. Mathematical Problems in Engineering, 9 pages. Article ID 4562647. https://doi.org/10.1155/2017/4562647Valero, F., Rubio, F., Llopis-Albert, C. (2019). Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-like Robot. Robotica, 37(11), 1998-2009. https://doi.org/10.1017/S0263574719000407Valero, F., Rubio, F., Besa, A.J. (2019a). Efficient trajectory of a car-like mobile robot. Industrial Robot: the international journal of robotics research and application, 46(2), 211-222. https://doi.org/10.1108/IR-10-2018-021

    Application of Learning Analytics to Improve Higher Education

    Full text link
    [EN] In the digital era, the teacher assumes very diverse roles among which are to be an adviser, a generator of multimedia content, and more recently a data analyst. Big data analytics may play a major role in Higher Education for all the agents involved, the teachers and educators, the students themselves and the managers or heads of university centers. This paper applies learning analytics to the subject of Theory of Machines and Strength of Materials of the bachelor's degree in Chemical Engineering at Universitat Politècnica de València (Spain). The aim of analyzing the available information is to improve teachers’ actions and communication, to enhance resource efficiency, to assess classroom procedures, the achievement of transversal competences, the student typology and their results, or the attitudes and commitment they acquire with the subject taught. Results show the existence of niches with competitive advantages, improvements in the quality and performance of the teaching-learning experience.Llopis-Albert, C.; Rubio, F. (2021). Application of Learning Analytics to Improve Higher Education. Multidisciplinary Journal for Education, Social and Technological Sciences. 8(2):1-18. https://doi.org/10.4995/muse.2021.16287OJS11882Dollár, A., Steif, P. S. (2012). Web-based Statics Course with Learning Dashboard for Instructors. Computers and Advanced Technology in Education. https://doi.org/10.2316/P.2012.774-025Ferguson, R. (2012). Learning analytics: Drivers, developments and challenges. In International Journal of Technology Enhanced Learning, 4, (5-6), 304-317. https://doi.org/10.1504/IJTEL.2012.051816Llopis-Albert, C., Rubio, F., Valero, F. (2015). Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research, 68 (7), 1429-1431. https://doi.org/10.1016/j.jbusres.2015.01.027Llopis-Albert, C., Rubio, F., Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1-16. https://doi.org/10.4995/muse.2018.9867Llopis-Albert, C., Rubio, F., Valero, F. (2019). Fuzzy-set qualitative comparative analysis applied to the design of a network flow of automated guided vehicles for improving business productivity. Journal of Business Research, 101, 737-742. https://doi.org/10.1016/j.jbusres.2018.12.076Llopis-Albert, C., Rubio, F., Valero, F., Liao, H., Zeng, S. (2019a). Stochastic inverse finite element modeling for characterization of heterogeneous material properties. Materials Research Express, 6(11), 115806. https://doi.org/10.1088/2053-1591/ab4c72Llopis-Albert, C., Valero, F., Mata, V., Pulloquinga, J.L., Zamora-Ortiz, P., Escarabajal, R.J. (2020). Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods. Sustainability, 12(14), 5803. https://doi.org/10.3390/su12145803Llopis-Albert, C., Valero, F., Mata, V., Zamora-Ortiz, P., Escarabajal, R.J., Pulloquinga, J.L. (2020a). Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance. Multidisciplinary Journal for Education, Social and Technological Sciences, 7(1), 113-127. https://doi.org/10.4995/muse.2020.13352Llopis-Albert, C., Rubio, F. (2021). Methodology to evaluate transversal competences in the master's degree in industrial engineering based on a system of rubrics and indicators. Multidisciplinary Journal for Education, Social and Technological Sciences, 8(1), 30-44. https://doi.org/10.4995/muse.2021.15244Llopis-Albert C., Rubio F., Valero F. (2021a). Modelling an industrial robot and its impact on productivity. Mathematics, 9(7):769. https://doi.org/10.3390/math9070769Llopis-Albert, C., Rubio, F., Valero, F. (2021). Impact of digital transformation on the automotive industry. Technological Forecasting and Social Change, 162, 120343. https://doi.org/10.1016/j.techfore.2020.120343Llopis-Albert, C., Palacios-Marqués, D., Simón-Moya, V. (2021). Fuzzy set qualitative comparative analysis (fsQCA) applied to the adaptation of the automobile industry to meet the emission standards of climate change policies via the deployment of electric vehicles (EVs). Technological Forecasting and Social Change, 169, 120843. https://doi.org/10.1016/j.techfore.2021.120843Llopis-Albert, C., Rubio, F., Valle-Falcones, L.M., Grima-Olmedo, C. (2020). Use of technical computing systems in the context of engineering problems. Multidisciplinary Journal for Education, Social and Technological Sciences, 7(2), 84-99. https://doi.org/10.4995/muse.2020.14283OEI (2019). Learning analytics and education. Revista iberoamericana de educación. Organización de Estados Iberoamericanos para la Educación, la Ciencia y la Cultura (OEI). Monográficos, volumen 80(1), 217 pages. https://rieoei.org/RIE/issue/view/Learning%20Analytics/vol%2080%281%29Rubio, F., Llopis-Albert, C., Valero, F., Suñer, J.L. (2015). Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots. Mathematical Problems in Engineering, 10 pages. Article ID 931048. https://doi.org/10.1155/2015/931048Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. https://doi.org/10.1016/j.robot.2016.09.008Rubio, F., Llopis-Albert, C. (2019). Viability of using wind turbines for electricity generation in electric vehicles. Multidisciplinary Journal for Education, Social and Technological Sciences, 6(1), 115-126. https://doi.org/10.4995/muse.2019.11743Rubio, F., Valero, F., & Llopis-Albert, C. (2019a). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 172988141983959. https://doi.org/10.1177/1729881419839596Rubio, F., Llopis-Albert, C., Valero, F., Besa, A.J. (2020). Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations. Journal of Business Research 112, 561-566. https://doi.org/10.1016/j.jbusres.2019.10.050UPV, 2020. Proyecto institucional competencias transversales. Universitat Politècnica de València (UPV). Valencia. Spain. https://www.upv.es/entidades/ICE/info/Proyecto_Institucional_CT.pdfValera Á., Valero F., Vallés M., Besa A., Mata V., Llopis-Albert C. (2021). Navigation of autonomous light vehicles using an optimal trajectory planning algorithm. Sustainability. 2021; 13(3):1233. https://doi.org/10.3390/su13031233Valero, F., Rubio, F., Llopis-Albert, C., Cuadrado, J.I. (2017). Influence of the Friction Coefficient on the Trajectory Performance for a Car-Like Robot. Mathematical Problems in Engineering, 9 pages. Article ID 4562647. https://doi.org/10.1155/2017/4562647Valero, F., Rubio, F., Llopis-Albert, C. (2019). Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-like Robot. Robotica, 37(11), 1998-2009. https://doi.org/10.1017/S0263574719000407Valero, F., Rubio, F., Besa, A.J. (2019a). Efficient trajectory of a car-like mobile robot. Industrial Robot: the international journal of robotics research and application, 46(2), 211-222. https://doi.org/10.1108/IR-10-2018-021

    Luxación postero-lateral de codo asociada a fractura ipsilateral de diáfisis de radio.

    Get PDF
    El objetivo del presente trabajo es describir una asociación poco frecuente de lesiones en el antebrazo, con luxación posterior de codo y fractura diafisaria ipsilateral de radio, describir el mecanismo de producción y revisión de la literatura. Se trata de un paciente de 56 años al que se diagnosticó este tipo de lesión tras una caída hacia atrás con el brazo en ligera flexión y apoyo sobre la mano, tratado mediante reducción cerrada de su luxación en codo y reducción abierta con fijación interna de la fractura diafisaria de radio. Tras un año y dos meses de seguimiento, los resultados funcionales y radiológicos son satisfactorios.The aim of this paper is to describe a rare association forearm injury with posterior dislocation of elbow and ipsilateral shaft fracture radius, describe the mechanism of production and review of the literature. This is a 56 year old who was diagnosed this injury after falling backwards with the arm in slight flexion and support on hand, treated by closed reduction of the elbow dislocation and open reduction with internal fixation diaphyseal fracture radius. After a year and two months follow-up, functional and radiological results are satisfactory

    Analysis of the Use of a Wind Turbine as an Energy Recovery Device in Transport Systems

    Full text link
    [EN] A wind turbine can act as an energy recovery device (ERS) in a comparable way to brakes (regenerative braking). When the velocity of a vehicle changes, the amount of energy related to it also changes. When its velocity decreases, the energy tends to dissipate. Over time, this dissipated energy has been ignored. For example, during the braking process, the kinetic energy of the vehicle was converted into heat. In recent years, society¿s greater awareness of climate change, pollution, and environmental issues has led to a great deal of interest in developing energy recovery systems. It allows the recovery of kinetic energy from braking (KERS), resulting in consumption reductions (efficiency gains) of up to 45%. The usefulness of installing a wind turbine as an energy recovery device is analysed, evaluating the savings that can be achieved with its two possible working modes: as an energy recovery device and as a system for utilizing aerodynamic force. The wind turbine has a horizontal axis and a diameter of 50 cm and is installed on the front of a vehicle. This vehicle will undergo three particular driving schemes, which will operate under different experimental conditions and operational parameters characterized by speeds, accelerations, stops, and driving time. The results clearly show the advantages of using the proposed technology.Rubio Montoya, FJ.; Llopis-Albert, C. (2021). Analysis of the Use of a Wind Turbine as an Energy Recovery Device in Transport Systems. Mathematics. 9(18):1-15. https://doi.org/10.3390/math9182265S11591
    corecore