218 research outputs found

    A conceptual framework for smart production planning and control in Industry 4.0

    Full text link
    [EN] This article aims to introduce the challenge (i.e., integration of new collaborative models and tools) posed by the automation and collaboration of industrial processes in Industry 4.0 (I4.0) smart factories. Small- and medium-sized enterprises (SMEs) are particularly confronted with new technological and organisational changes, but a conceptual framework for production planning and control (PPC) systems in the I4.0 context is lacking. The main contributions of this article are to: (i) identify the functions making up traditional PPC and smart production planning and control in I4.0 (SPPC 4.0); (ii) analyse the impact of I4.0 technologies on PPC systems; (iii) propose a conceptual framework that provides the systematic structuring of how a PPC system operates in the I4.0 context, dubbed SPPC 4.0. Thus SPPC 4.0 is proposed by adopting the axes of the RAMI 4.0 reference architecture model, which compiles and contains the main concepts of PPC systems and I4.0. It also provides the technical description, organisation and understanding of each aspect, which can provide a guide for academic research and industrial practitioners to transform PPC systems towards I4.0 implementations. Finally, theoretical implications and research gaps are provided.The research leading to these results received funding from the European Union H2020 Program with grant agreements No. 958205 "Industrial Data Services for Quality Control in Smart Manufacturing (i4Q)" and No. 825631 "Zero-Defect Manufacturing Platform (ZDMP)"; the "Industrial Production and Logistics Optimization in Industry 4.0" (i4OPT) (Ref. PROMETEO/2021/065) project granted by the Valencian Regional Government; and the PAI-12-21 open-access support from the Universitat Politecnica de Valencia.Cañas, H.; Mula, J.; Campuzano-Bolarín, F.; Poler, R. (2022). A conceptual framework for smart production planning and control in Industry 4.0. Computers & Industrial Engineering. 173:1-12. https://doi.org/10.1016/j.cie.2022.10865911217

    A squeeze-like operator approach to position-dependent mass in quantum mechanics

    Get PDF
    We provide a squeeze-like transformation that allows one to remove a position dependent mass from the Hamiltonian. Methods to solve the Schr\"{o}dinger equation may then be applied to find the respective eigenvalues and eigenfunctions. As an example, we consider a position-dependent-mass that leads to the integrable Morse potential and therefore to well-known solutions

    Editorial

    Get PDF
    doi: 10.17139/raab.2014.0016.01.0

    Investigaciones antropobiológicas en Argentina, desde la década de 1930 hasta la actualidad

    Get PDF
    La investigación bioantropológica en la Argentina fue muy activa tanto en la primera etapa, comienzos del siglo XVII a 1936, como en el período que va desde ese año hasta la actualidad. La primera etapa comienza con los monjes españoles de la época de la Conquista quienes se interesaron por la paleontología. Francisco Javier Muñiz realizó la primera actividad verdaderamente científica y también enseñó al joven Ameghino a excavar y reconocer piezas fósiles. Florentino Ameghino y sus dos hermanos -Carlos y Juan- contribuyeron al desarrollo de la paleontología en América. Otros investigadores destacados fueron: Moreno, Zeballos, Castellanos, Senet y Lehmann-Nitsche, entre otros. El segundo período contó con muchos investigadores en antropología biológica y otras ciencias afines, argentinos y europeos. En particular, hacia 1930 Marelli introdujo los cálculos estadísticos en Antropología y Fernando Pérez descubrió un nuevo sistema de orientación craneal. Posteriormente, Marcellino y Cocilovo introdujeron las primeras técnicas de análisis multivariado en el país, empleadas luego por la Antropología Biológica sudamericana. Estos hallazgos, sumados a la introducción de principios genéticos para interpretar movimientos migratorios, respuestas adaptativas bien diferenciadas y modelos estocásticos sobre asentamientos y migraciones humanas, cumplimentan los avances de la Antropología Biológica en la Argentina en los tiempos modernos. Este artículo intenta describir esa historia.Research in Argentine biological anthropology was very active in both the early period, from the early 18th century to 1936, and the one starting from that point to the present. The former period began with the Spanish monks who arrived during the Conquest and were interested in paleontology. Francisco Javier Muñiz did the first truly scientific activity and also taught young Florentino Ameghino to dig and recognize fossil pieces. Ameghino and his brothers -Carlos and Juan- contributed to the development of paleontology in the Americas. Other well-known researchers were: Moreno, Zeballos, Castellanos, Senet, and Lehmann-Nitsche, among others. The second period had many researchers in Physical Anthropology and several attached sciences, both Argentinian and European. In particular, around 1930 Marelli introduced the statistical calculus in anthropology and Fernando Pérez discovered a new cranial orientation system. Later, Marcellino and Cocilovo introduced the earliest techniques of multivariate analysis known in Argentina, employed for solving many South-American physical anthropological problems afterwards. These findings, along with the introduction of genetic principles for interpreting migratory movements and a number of well differentiated adaptive responses and stochastic models concerning man migration and settlements, fulfilled Argentina’s Physical Anthropology advances in modern times. This article attempts to describe that history.Sociedad Argentina de Antropologí

    Editorial

    Get PDF
    Presentación de los contenidos de la revista.Facultad de Ciencias Naturales y Muse

    Editorial

    Get PDF
    doi: 10.17139/raab.2014.0016.01.0

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies

    Get PDF
    We measure and analyse the bispectrum of the final, Data Release 12, galaxy sample provided by the Baryon Oscillation Spectroscopic Survey, splitting by selection algorithm into LOWZ and CMASS galaxies. The LOWZ sample contains 361\,762 galaxies with an effective redshift of zLOWZ=0.32z_{\rm LOWZ}=0.32, and the CMASS sample 777\,202 galaxies with an effective redshift of zCMASS=0.57z_{\rm CMASS}=0.57. Combining the power spectrum, measured relative to the line-of-sight, with the spherically averaged bispectrum, we are able to constrain the product of the growth of structure parameter, ff, and the amplitude of dark matter density fluctuations, σ8\sigma_8, along with the geometric Alcock-Paczynski parameters, the product of the Hubble constant and the comoving sound horizon at the baryon drag epoch, H(z)rs(zd)H(z)r_s(z_d), and the angular distance parameter divided by the sound horizon, DA(z)/rs(zd)D_A(z)/r_s(z_d). After combining pre-reconstruction RSD analyses of the power spectrum monopole, quadrupole and bispectrum monopole; with post-reconstruction analysis of the BAO power spectrum monopole and quadrupole, we find f(zLOWZ)σ8(zLOWZ)=0.427±0.056f(z_{\rm LOWZ})\sigma_8(z_{\rm LOWZ})=0.427\pm 0.056, DA(zLOWZ)/rs(zd)=6.60±0.13D_A(z_{\rm LOWZ})/r_s(z_d)=6.60 \pm 0.13, H(zLOWZ)rs(zd)=(11.55±0.38)103kms1H(z_{\rm LOWZ})r_s(z_d)=(11.55\pm 0.38)10^3\,{\rm kms}^{-1} for the LOWZ sample, and f(zCMASS)σ8(zCMASS)=0.426±0.029f(z_{\rm CMASS})\sigma_8(z_{\rm CMASS})=0.426\pm 0.029, DA(zCMASS)/rs(zd)=9.39±0.10D_A(z_{\rm CMASS})/r_s(z_d)=9.39 \pm 0.10, H(zCMASS)rs(zd)=(14.02±0.22)103kms1H(z_{\rm CMASS})r_s(z_d)=(14.02\pm 0.22)10^3\,{\rm kms}^{-1} for the CMASS sample. We find general agreement with previous BOSS DR11 and DR12 measurements. Combining our dataset with {\it Planck15} we perform a null test of General Relativity (GR) through the γ\gamma-parametrisation finding γ=0.7330.069+0.068\gamma=0.733^{+0.068}_{-0.069}, which is 2.7σ\sim2.7\sigma away from the GR predictions.Comment: 34 pages, 22 figures, 8 tables. Accepted for publication in MNRAS. Data available at https://sdss3.org//science/boss_publications.ph
    corecore