10,084 research outputs found
Using individual tracking data to validate the predictions of species distribution models
The authors would like to thank the College of Life Sciences of Aberdeen University and Marine Scotland Science which funded CP's PhD project. Skate tagging experiments were undertaken as part of Scottish Government project SP004. We thank Ian Burrett for help in catching the fish and the other fishermen and anglers who returned tags. We thank José Manuel Gonzalez-Irusta for extracting and making available the environmental layers used as environmental covariates in the environmental suitability modelling procedure. We also thank Jason Matthiopoulos for insightful suggestions on habitat utilization metrics as well as Stephen C.F. Palmer, and three anonymous reviewers for useful suggestions to improve the clarity and quality of the manuscript.Peer reviewedPostprintPostprintPostprintPostprintPostprin
Rapid and sensitive large-scale screening of low affinity extracellular receptor protein interactions by using reaction induced inhibition of Gaussia luciferase.
Extracellular protein interactions mediated by cell surface receptors are essential for intercellular communication in multicellular organisms. Assays to detect extracellular interactions must account for their often weak binding affinities and also the biochemical challenges in solubilising membrane-embedded receptors in an active form. Methods based on detecting direct binding of soluble recombinant receptor ectodomains have been successful, but genome-scale screening is limited by the usual requirement of producing sufficient amounts of each protein in two different forms, usually a "bait" and "prey". Here, we show that oligomeric receptor ectodomains coupled to concatenated units of the light-generating Gaussia luciferase enzyme robustly detected low affinity interactions and reduced the amount of protein required by several orders of magnitude compared to other reporter enzymes. Importantly, we discovered that this flash-type luciferase exhibited a reaction-induced inhibition that permitted the use of a single protein preparation as both bait and prey thereby halving the number of expression plasmids and recombinant proteins required for screening. This approach was tested against a benchmarked set of quantified extracellular interactions and shown to detect extremely weak interactions (KDs ≥ μM). This method will facilitate large-scale receptor interaction screening and contribute to the goal of mapping networks of cellular communication
Zebrafish Caudal Haematopoietic Embryonic Stromal Tissue (CHEST) Cells Support Haematopoiesis.
Haematopoiesis is an essential process in early vertebrate development that occurs in different distinct spatial locations in the embryo that shift over time. These different sites have distinct functions: in some anatomical locations specific hematopoietic stem and progenitor cells (HSPCs) are generated de novo. In others, HSPCs expand. HSPCs differentiate and renew in other locations, ensuring homeostatic maintenance. These niches primarily control haematopoiesis through a combination of cell-to-cell signalling and cytokine secretion that elicit unique biological effects in progenitors. To understand the molecular signals generated by these niches, we report the generation of caudal hematopoietic embryonic stromal tissue (CHEST) cells from 72-hours post fertilization (hpf) caudal hematopoietic tissue (CHT), the site of embryonic HSPC expansion in fish. CHEST cells are a primary cell line with perivascular endothelial properties that expand hematopoietic cells in vitro. Morphological and transcript analysis of these cultures indicates lymphoid, myeloid, and erythroid differentiation, indicating that CHEST cells are a useful tool for identifying molecular signals critical for HSPC proliferation and differentiation in the zebrafish. These findings permit comparison with other temporally and spatially distinct haematopoietic-supportive zebrafish niches, as well as with mammalian haematopoietic-supportive cells to further the understanding of the evolution of the vertebrate hematopoietic system
Recommended from our members
Young people and resettlement: participatory approaches: a practitioner’s guide
The FASB Approach to Income Determination: Is It Viable?
A question which has been debated by the accounting profession for decades is whether there exists a single set of correct rules for use in reporting \u27true income\u27 which would enable comparability in reporting for all firms to be achieved. Those who believe a \u27true income\u27 figure does exist, advance their position by attempting to reduce choices among alternatives.
Not infrequently the debate centers around the matching principle, i.e., the timing of recognition of an expense. Accounting has its basis in the accrual system. It does not necessarily convey cash inflows and outflows of the current period so much as it seeks to serve as a predictor of future cash flows. Matching expense via systematic and rational allocation to related revenues when they are realized is appropriate and acceptable in the accrual system. Thus the question often arises as to whether management should capitalize a given item with amortization over a specified life or whether management should charge the entire item to income for the current period (immediate recognition). This argument is characterized as the debate over existence of a \u27true income\u27 figure on a per year basis
Prescribing Target Running Intensities for High-School Athletes: Can Forward and Backward Running Performance Be Autoregulated?
Target running intensities are prescribed to enhance sprint-running performance and progress injured athletes back into competition, yet is unknown whether running speed can be achieved using autoregulation. This study investigated the consistency of running intensities in adolescent athletes using autoregulation to self-select velocity. Thirty-four boys performed 20 m forward running (FR) and backward running (BR) trials at slow, moderate and fast intensities (40–55%, 60–75% and +90% maximum effort, respectively) on three occasions. Absolute and relative consistency was assessed using the coefficient of variation (CV) and intraclass correlation coefficients (ICC). Systematic changes in 10 and 20 m performance were identified between trials 1–2 for moderate and fast BR (p ≤ 0.01) and during moderate BR over 20 m across trials 2–3 (p ≤ 0.05). However, comparisons between trials 2–3 resulted in low typical percentage error (CV ≤ 4.3%) and very good to excellent relative consistency (ICC ≥ 0.87) for all running speeds and directions. Despite FR being significantly (p ≤ 0.01) faster than BR at slow (26%), moderate (28%) and fast intensities (26%), consistency was similar in both running directions and strongest at the fastest speeds. Following appropriate familiarization, youth athletes may use autoregulation to self-select prescribed FR and BR target running intensitie
- …