111 research outputs found

    Thermodynamic and Transport Properties of CeMg2Cu9 under Pressure

    Full text link
    We report the transport and thermodynamic properties under hydrostatic pressure in the antiferromagnetic Kondo compound CeMg2Cu9 with a two-dimensional arrangement of Ce atoms. Magnetic specific heat Cmag(T) shows a Schottky-type anomaly around 30 K originating from the crystal electric field (CEF) splitting of the 4f state with the first excited level at \Delta_{1}/kB = 58 K and the second excited level at \Delta_{2}/kB = 136 K from the ground state. Electric resistivity shows a two-peaks structure due to the Kondo effect on each CEF level around T_{1}^{max} = 3 K and T_{2}^{max} = 40 K. These peaks merge around 1.9 GPa with compression. With increasing pressure, Neel temperature TN initially increases and then change to decrease. TN finally disappears at the quantum critical point Pc = 2.4 GPa.Comment: 10 pages, 6 figure

    Unusual kondo behavior in the indium-rich heavy fermion antiferromagnet Ce3Pt4In13

    Full text link
    We report the thermodynamic, magnetic, and electronic transport properties of the new ternary intermetallic system (Ce,La)3Pt4In13. Ce3Pt4In13 orders antiferromagnetically at 0.95 K while the non-magnetic compound La3Pt4In13 is a conventional 3.3 K superconductor. Kondo lattice effects appear to limit the entropy associated with the Neel transition to (1/4)Rln2 as an electronic contribution to the specific heat of gamma = 1 J/mole-Ce K2 is observed at TN; roughly 35% of this gamma survives the ordering transition. Hall effect, thermoelectric power, and ambient-pressure resistivity measurements confirm this interpretation. These results suggest that RKKY and Kondo interactions are closely balanced in this compound (TN = TK). Contrary to expectations based on the Doniach Kondo necklace model, applied hydrostatic pressure modestly enhances the magnetic ordering temperature with dTN/dP = +23 mK/kbar. As such Ce3Pt4In13 provides a counterexample to Kondo systems with similar Kondo and RKKY energy scales wherein applied pressure enhances TK at the expense of the ordered magnetic state.Comment: submitted to Physical Review

    A new specimen of the ornithischian dinosaur Hesperosaurus mjosi from the Upper Jurassic Morrison Formation of Montana, U.S.A., and implications for growth and size in Morrison stegosaurs

    Get PDF
    Stegosauria is a clade of ornithischian dinosaurs characterized by a bizarre array of dermal armor that extends from the neck to the end of the tail. Two genera of stegosaur are currently recognised from North America: the well-known Stegosaurus stenops and the much rarer Hesperosaurus mjosi. A new specimen of Hesperosaurus mjosi was discovered in some of the most northerly outcrops of the Upper Jurassic Morrison Formation near Livingston, Montana. The new specimen includes cranial, vertebral, and appendicular material as well as a dermal plate, and the excellent state of preservation of the palate reveals new anatomical information about this region in stegosaurs. Histological examination of the tibia indicates that the individual was not skeletally mature at time of death. Comparison with previously studied Stegosaurus and Hesperosaurus individuals indicates that Hesperosaurus mjosi may have been a smaller species than Stegosaurus stenops. Physiological processes scale with body mass, M, according to the relationship M0.75 in extant megaherbivores; thus, larger animals are better able to cope with more arid environments where forage is less abundant. Under this scenario, it is possible that Stegosaurus stenops and Hesperosaurus mjosi were environmentally partitioned, with the larger S. stenops occupying more arid environments. Analyses of the temporal overlap and latitudinal range of Morrison stegosaurs would allow this hypothesis to be investigated.The attached document is the authors’ final accepted version of the journal article. You are advised to consult the publisher’s version if you wish to cite from it

    Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx

    Get PDF
    Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs. This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue typical of non-avialan dinosaurs. We report that Archaeopteryx long bones are composed of nearly avascular parallel-fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds. Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and other basalmost birds follow. Growth analysis for Archaeopteryx suggests that these animals showed exponential growth rates like non-avialan dinosaurs, three times slower than living precocial birds, but still within the lowermost range for all endothermic vertebrates. The unexpected histology of Archaeopteryx and other basalmost birds is actually consistent with retention of the phylogenetically earlier paravian dinosaur condition when size is considered. The first birds were simply feathered dinosaurs with respect to growth and energetic physiology. The evolution of the novel pattern in modern forms occurred later in the group's history

    The Ontogenetic Osteohistology of Tenontosaurus tilletti

    Get PDF
    Tenontosaurus tilletti is an ornithopod dinosaur known from the Early Cretaceous (Aptian-Albian) Cloverly and Antlers formations of the Western United States. It is represented by a large number of specimens spanning a number of ontogenetic stages, and these specimens have been collected across a wide geographic range (from central Montana to southern Oklahoma). Here I describe the long bone histology of T. tilletti and discuss histological variation at the individual, ontogenetic and geographic levels. The ontogenetic pattern of bone histology in T. tilletti is similar to that of other dinosaurs, reflecting extremely rapid growth early in life, and sustained rapid growth through sub-adult ontogeny. But unlike other iguanodontians, this dinosaur shows an extended multi-year period of slow growth as skeletal maturity approached. Evidence of termination of growth (e.g., an external fundamental system) is observed in only the largest individuals, although other histological signals in only slightly smaller specimens suggest a substantial slowing of growth later in life. Histological differences in the amount of remodeling and the number of lines of arrested growth varied among elements within individuals, but bone histology was conservative across sampled individuals of the species, despite known paleoenvironmental differences between the Antlers and Cloverly formations. The bone histology of T. tilletti indicates a much slower growth trajectory than observed for other iguanodontians (e.g., hadrosaurids), suggesting that those taxa reached much larger sizes than Tenontosaurus in a shorter time

    Hole doping by Li substitution and antiferromagnetism in YBa

    No full text
    The magnetic structure of tetragonal insulating YBa2Cu3x_{3-x}LixOy has been studied as a function of x and y. The Néel temperature and the mean ordered magnetic moment on the Cu2 sites were determined by neutron powder diffraction measurements. The decrease of these two parameters as compared to YBa2Cu3O6 is much stronger for lithium than for zinc substitution. The difference is quantitatively explained by the presence of holes created in the CuO2 planes. These holes arise from the substitution of plane Cu2+ by Li+. We suggest an explanation why such holes are not seen for the same substitution of plane Cu2+ by Li+ in orthorhombic superconducting YBa2Cu3x_{3-x}LixO7δ_{7-\delta}
    corecore