193 research outputs found

    Thermodynamic and Transport Properties of CeMg2Cu9 under Pressure

    Full text link
    We report the transport and thermodynamic properties under hydrostatic pressure in the antiferromagnetic Kondo compound CeMg2Cu9 with a two-dimensional arrangement of Ce atoms. Magnetic specific heat Cmag(T) shows a Schottky-type anomaly around 30 K originating from the crystal electric field (CEF) splitting of the 4f state with the first excited level at \Delta_{1}/kB = 58 K and the second excited level at \Delta_{2}/kB = 136 K from the ground state. Electric resistivity shows a two-peaks structure due to the Kondo effect on each CEF level around T_{1}^{max} = 3 K and T_{2}^{max} = 40 K. These peaks merge around 1.9 GPa with compression. With increasing pressure, Neel temperature TN initially increases and then change to decrease. TN finally disappears at the quantum critical point Pc = 2.4 GPa.Comment: 10 pages, 6 figure

    Histological evidence for a supraspinous ligament in sauropod dinosaurs

    Get PDF
    Supraspinous ossified rods have been reported in the sacra of some derived sauropod dinosaurs. Although different hypotheses have been proposed to explain the origin ofthis structure, histological evidence has never been provided to support or reject any of them. In order to establish its origin, we analyse and characterize the microstructure of thesupraspinous rod of two sauropod dinosaurs from the Upper Cretaceous of Argentina. The supraspinous ossified rod is almost entirely formed by dense Haversian bone. Remains ofprimary bone consist entirely of an avascular tissue composed of two types of fibre-like structures, which are coarse and longitudinally (parallel to the main axis of the element) oriented. These structures are differentiated on the basis of their optical properties under polarized light. Very thin fibrous strands are also observed in some regions. These small fibres are all oriented parallel to one another but perpendicular to the element main axis. Histological features of the primary bone tissue indicate that the sacral supraspinous rod corresponds to an ossified supraspinous ligament. The formation of this structure appears to have been a non-pathological metaplastic ossification, possibly induced by the continuous tensile forces applied to the element.Fil: Cerda, Ignacio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; Argentina. Universidad Nacional de Río Negro; ArgentinaFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: Martínez, Rubén Darío. Universidad Nacional de la Patagonia ; ArgentinaFil: Ibiricu, Lucio Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentin

    Secure Code Update for Embedded Devices via Proofs of Secure Erasure

    Get PDF
    Abstract. Remote attestation is the process of verifying internal state of a remote embedded device. It is an important component of many security protocols and applications. Although previously proposed re-mote attestation techniques assisted by specialized secure hardware are effective, they not yet viable for low-cost embedded devices. One no-table alternative is software-based attestation, that is both less costly and more efficient. However, recent results identified weaknesses in some proposed software-based methods, thus showing that security of remote software attestation remains a challenge. Inspired by these developments, this paper explores an approach that relies neither on secure hardware nor on tight timing constraints typi-cal of software-based technqiques. By taking advantage of the bounded memory/storage model of low-cost embedded devices and assuming a small amount of read-only memory (ROM), our approach involves a new primitive – Proofs of Secure Erasure (PoSE-s). We also show that, even though it is effective and provably secure, PoSE-based attestation is not cheap. However, it is particularly well-suited and practical for two other related tasks: secure code update and secure memory/storage erasure. We consider several flavors of PoSE-based protocols and demonstrate their feasibility in the context of existing commodity embedded devices.

    Unusual kondo behavior in the indium-rich heavy fermion antiferromagnet Ce3Pt4In13

    Full text link
    We report the thermodynamic, magnetic, and electronic transport properties of the new ternary intermetallic system (Ce,La)3Pt4In13. Ce3Pt4In13 orders antiferromagnetically at 0.95 K while the non-magnetic compound La3Pt4In13 is a conventional 3.3 K superconductor. Kondo lattice effects appear to limit the entropy associated with the Neel transition to (1/4)Rln2 as an electronic contribution to the specific heat of gamma = 1 J/mole-Ce K2 is observed at TN; roughly 35% of this gamma survives the ordering transition. Hall effect, thermoelectric power, and ambient-pressure resistivity measurements confirm this interpretation. These results suggest that RKKY and Kondo interactions are closely balanced in this compound (TN = TK). Contrary to expectations based on the Doniach Kondo necklace model, applied hydrostatic pressure modestly enhances the magnetic ordering temperature with dTN/dP = +23 mK/kbar. As such Ce3Pt4In13 provides a counterexample to Kondo systems with similar Kondo and RKKY energy scales wherein applied pressure enhances TK at the expense of the ordered magnetic state.Comment: submitted to Physical Review

    Breeding young as a survival strategy during earth’s greatest mass extinction

    Get PDF
    Studies of the effects of mass extinctions on ancient ecosystems have focused on changes in taxic diversity, morphological disparity, abundance, behaviour and resource availability as key determinants of group survival. Crucially, the contribution of life history traits to survival during terrestrial mass extinctions has not been investigated, despite the critical role of such traits for population viability. We use bone microstructure and body size data to investigate the palaeoecological implications of changes in life history strategies in the therapsid forerunners of mammals before and after the Permo-Triassic Mass Extinction (PTME), the most catastrophic crisis in Phanerozoic history. Our results are consistent with truncated development, shortened life expectancies, elevated mortality rates and higher extinction risks amongst post-extinction species. Various simulations of ecological dynamics indicate that an earlier onset of reproduction leading to shortened generation times could explain the persistence of therapsids in the unpredictable, resource-limited Early Triassic environments, and help explain observed body size distributions of some disaster taxa (e.g., Lystrosaurus). Our study accounts for differential survival in mammal ancestors after the PTME and provides a methodological framework for quantifying survival strategies in other vertebrates during major biotic crises

    Growth Dynamics of Australia's Polar Dinosaurs

    Get PDF
    Analysis of bone microstructure in ornithopod and theropod dinosaurs from Victoria, Australia, documents ontogenetic changes, providing insight into the dinosaurs' successful habitation of Cretaceous Antarctic environments. Woven-fibered bone tissue in the smallest specimens indicates rapid growth rates during early ontogeny. Later ontogeny is marked by parallel-fibered tissue, suggesting reduced growth rates approaching skeletal maturity. Bone microstructure similarities between the ornithopods and theropods, including the presence of LAGs in each group, suggest there is no osteohistologic evidence supporting the hypothesis that polar theropods hibernated seasonally. Results instead suggest high-latitude dinosaurs had growth trajectories similar to their lower-latitude relatives and thus, rapid early ontogenetic growth and the cyclical suspensions of growth inherent in the theropod and ornithopod lineages enabled them to successfully exploit polar regions

    Modified Laminar Bone in Ampelosaurus atacis and Other Titanosaurs (Sauropoda): Implications for Life History and Physiology

    Get PDF
    BACKGROUND: Long bone histology of the most derived Sauropoda, the Titanosauria suggests that titanosaurian long bone histology differs from the uniform bone histology of basal Sauropoda. Here we describe the long bone histology of the titanosaur Ampelosaurus atacis and compare it to that of basal neosauropods and other titanosaurs to clarify if a special titanosaur bone histology exists. METHODOLOGY/PRINCIPAL FINDINGS: Ampelosaurus retains the laminar vascular organization of basal Sauropoda, but throughout most of cortical growth, the scaffolding of the fibrolamellar bone, which usually is laid down as matrix of woven bone, is laid down as parallel-fibered or lamellar bone matrix instead. The remodeling process by secondary osteons is very extensive and overruns the periosteal bone deposition before skeletal maturity is reached. Thus, no EFS is identifiable. Compared to the atypical bone histology of Ampelosaurus, the large titanosaur Alamosaurus shows typical laminar fibrolamellar bone. The titanosaurs Phuwiangosaurus, Lirainosaurus, and Magyarosaurus, although differing in certain features, all show this same low amount or absence of woven bone from the scaffolding of the fibrolamellar bone, indicating a clear reduction in growth rate resulting in a higher bone tissue organization. To describe the peculiar primary cortical bone tissue of Phuwiangosaurus, Ampelosaurus, Lirainosaurus, and Magyarosaurus, we here introduce a new term, "modified laminar bone" (MLB). CONCLUSIONS/SIGNIFICANCE: Importantly, MLB is as yet not known from extant animals. At least in Lirainosaurus and Magyarosaurus the reduction of growth rate indicated by MLB is coupled with a drastic body size reduction and maybe also a reduction in metabolic rate, interpreted as a result of dwarfing on the European islands during the Late Cretaceous. Phuwiangosaurus and Ampelosaurus both show a similar reduction in growth rate but not in body size, possibly indicating also a reduced metabolic rate. The large titanosaur Alamosaurus, on the other hand, retained the plesiomorphic bone histology of basal neosauropods

    A new specimen of the ornithischian dinosaur Hesperosaurus mjosi from the Upper Jurassic Morrison Formation of Montana, U.S.A., and implications for growth and size in Morrison stegosaurs

    Get PDF
    Stegosauria is a clade of ornithischian dinosaurs characterized by a bizarre array of dermal armor that extends from the neck to the end of the tail. Two genera of stegosaur are currently recognised from North America: the well-known Stegosaurus stenops and the much rarer Hesperosaurus mjosi. A new specimen of Hesperosaurus mjosi was discovered in some of the most northerly outcrops of the Upper Jurassic Morrison Formation near Livingston, Montana. The new specimen includes cranial, vertebral, and appendicular material as well as a dermal plate, and the excellent state of preservation of the palate reveals new anatomical information about this region in stegosaurs. Histological examination of the tibia indicates that the individual was not skeletally mature at time of death. Comparison with previously studied Stegosaurus and Hesperosaurus individuals indicates that Hesperosaurus mjosi may have been a smaller species than Stegosaurus stenops. Physiological processes scale with body mass, M, according to the relationship M0.75 in extant megaherbivores; thus, larger animals are better able to cope with more arid environments where forage is less abundant. Under this scenario, it is possible that Stegosaurus stenops and Hesperosaurus mjosi were environmentally partitioned, with the larger S. stenops occupying more arid environments. Analyses of the temporal overlap and latitudinal range of Morrison stegosaurs would allow this hypothesis to be investigated.The attached document is the authors’ final accepted version of the journal article. You are advised to consult the publisher’s version if you wish to cite from it
    corecore