225 research outputs found

    Constructing neutron stars with a gravitational Higgs mechanism

    Get PDF
    In scalar-tensor theories, spontaneous scalarization is a phase transition that can occur in ultradense environments such as neutron stars. The scalar field develops a non-trivial configuration once the stars exceeds a compactness threshold. We recently pointed out that, if the scalar exhibits some additional coupling to matter, it could give rise to significantly different microphysics in these environments. In this work we study, at the non-perturbative level, a toy model in which the photon is given a large mass when spontaneous scalarization occurs. Our results demonstrate clearly the effectiveness of spontaneous scalarization as a Higgs-like mechanism in neutron stars

    Strong-Field phenomenology in alternative theories of gravitation

    Get PDF
    Assessing the validity of general relativity requires to test its principles and solutions in every possible regime. Up to date, general relativity is in agreement with weak-field tests of gravity and with binary pulsars observations, and it is consistent with the data coming from the detection of gravitational waves emitted by binaries of compact objects. Although general relativity fits the data well, a confrontation with alternative theories would make these results more robust. Such a direct comparison requires predictions for the systems in question in interesting theories beyond general relativity. The first step to compensate for this lack is to understand the physics of black holes and neutron stars within alternative theories of gravity. This thesis lies in this framework. We analyse the features of compact objects in some selected theories beyond general relativity. The first part is devoted to the aspects of the causality of black holes in theories admitting superluminal perturbations. We study the causal structure of extremal charged black holes in the infrared limit of Ho\v{r}ava gravity, and the propagation of a scalar field around a stationary black hole in Horndeski gravity. In the rest of the manuscript we discuss the phenomenon of spontaneous scalarization. With this mechanism, one can give rise spontaneously to a scalar field profile around a compact object as a result of a linear tachyonic instability. We analyse the onset of this instability in the context of Horndeski gravity, and its implications to cosmology. Finally, we take a model which breaks the weak equivalence principle, and we use spontaneous scalarization to suppress these violations outside and far away from a neutron star

    Constraining modifications of black hole perturbation potentials near the light ring with quasinormal modes

    Full text link
    In modified theories of gravity, the potentials appearing in the Schr\"odinger-like equations that describe perturbations of non-rotating black holes are also modified. In this paper we ask: can these modifications be constrained with high-precision gravitational-wave measurements of the black hole's quasinormal mode frequencies? We expand the modifications in a small perturbative parameter regulating the deviation from the general-relativistic potential, and in powers of M/rM/r. We compute the quasinormal modes of the modified potential up to quadratic order in the perturbative parameter. Then we use Markov-chain-Monte-Carlo (MCMC) methods to recover the coefficients in the M/rM/r expansion in an ``optimistic'' scenario where we vary them one at a time, and in a ``pessimistic'' scenario where we vary them all simultaneously. In both cases, we find that the bounds on the individual parameters are not robust. Because quasinormal mode frequencies are related to the behavior of the perturbation potential near the light ring, we propose a different strategy. Inspired by Wentzel-Kramers-Brillouin (WKB) theory, we demonstrate that the value of the potential and of its second derivative at the light ring can be robustly constrained. These constraints allow for a more direct comparison between tests based on black hole spectroscopy and observations of black hole `shadows'' by the Event Horizon Telescope and future instruments.Comment: 12 pages, 7 figure

    Spontaneous scalarization in generalized scalar-tensor theory

    Get PDF
    Spontaneous scalarization is a mechanism that endows relativistic stars and black holes with a nontrivial configuration only when their spacetime curvature exceeds some threshold. The standard way to trigger spontaneous scalarization is via a tachyonic instability at the linear level, which is eventually quenched due to the effect of nonlinear terms. In this paper, we identify all of the terms in the Horndeski action that contribute to the (effective) mass term in the linearized equations and, hence, can cause or contribute to the tachyonic instability that triggers scalarization

    Detecting Scalar Fields with Extreme Mass Ratio Inspirals

    Get PDF
    We study extreme mass ratio inspirals (EMRIs), during which a small body spirals into a supermassive black hole, in gravity theories with additional scalar fields. We first argue that no-hair theorems and the properties of known theories that manage to circumvent them introduce a drastic simplification to the problem: the effects of the scalar on supermassive black holes, if any, are mostly negligible for EMRIs in vast classes of theories. We then exploit this simplification to model the inspiral perturbatively and we demonstrate that the scalar charge of the small body leaves a significant imprint on gravitational wave emission. Although much higher precision is needed for waveform modeling, our results strongly suggest that this imprint is observable with Laser Interferometer Space Antenna, rendering EMRIs promising probes of scalar fields

    Black hole horizons at the extremal limit in Lorentz-violating gravity

    Get PDF
    Lorentz-violating gravity theories with a preferred foliation can have instantaneous propagation. Nonetheless, it has been shown that black holes can still exist in such theories and the relevant notion of an event horizon has been dubbed “universal horizon.” In stationary spacetimes the universal horizon has to reside in a region of spacetime where the Killing vector associated with stationarity is spacelike. This raises the question of what happens to the universal horizon in the extremal limit, where no such region exists anymore. We use a decoupling limit approximation to study this problem. Our results suggest that at the extremal limit, the extremal Killing horizon appears to play the role of a degenerate universal horizon, despite being a null and not a spacelike surface, and hence not a leaf of the preferred foliation

    Constraining black holes with light boson hair and boson stars using epicyclic frequencies and quasiperiodic oscillations

    Get PDF
    Light bosonic fields are ubiquitous in extensions of the Standard Model. Even when minimally coupled to gravity, these fields might evade the assumptions of the black-hole no-hair theorems and give rise to spinning black holes which can be drastically different from the Kerr metric. Furthermore, they allow for self-gravitating compact solitons, known as (scalar or Proca) boson stars. The quasiperiodic oscillations (QPOs) observed in the x-ray flux emitted by accreting compact objects carry information about the strong-field region, thus providing a powerful tool to constrain deviations from Kerr’s geometry and to search for exotic compact objects. By using the relativistic precession model as a proxy to interpret the QPOs in terms of geodesic frequencies, we investigate how the QPO frequencies could be used to test the no-hair theorem and the existence of light bosonic fields near accreting compact objects. We show that a detection of two QPO triplets with current sensitivity can already constrain these models and that the future eXTP mission or a LOFT-like mission can set very stringent constraints on black holes with bosonic hair and on (scalar or Proca) boson stars. The peculiar geodesic structure of compact scalar/Proca boson stars implies that these objects can easily be ruled out as alternative models for x-ray source GRO J1655-40

    Causal structure of black holes in shift-symmetric Horndeski theories

    Get PDF
    In theories with derivative (self-)interactions, the propagation of perturbations on nontrivial field configurations is determined by effective metrics. Generalized scalar-tensor theories belong in this class and this implies that the matter fields and gravitational perturbations do not necessarily experience the same causal structure. Motivated by this, we explore the causal structure of black holes as perceived by scalar fields in the Horndeski class. We consider linearized perturbations on a fixed background metric that describes a generic black hole. The effective metric that determines the propagation of these perturbations does not generally coincide with the background metric (to which matter fields couple minimally). Assuming that the metric and the scalar respect stationarity and that the surface gravity of the horizon is constant, we prove that Killing horizons of the background metric are always Killing horizons of the effective metric as well. Hence, scalar perturbations cannot escape the region that matter fields perceive as the interior of the black hole. This result does not depend on asymptotics but only on local considerations and does not make any reference to no-hair theorems. We then demonstrate that, when one relaxes the stationarity assumption for the scalar, solutions where the horizons of the effective and the background metrics do not match can be found in the decoupling limit

    Spherical collapse in scalar-Gauss-Bonnet gravity: Taming ill-posedness with a Ricci coupling

    Get PDF
    We study spherical collapse of a scalar cloud in scalar-Gauss-Bonnet gravity—a theory in which black holes can develop scalar hair if they are in a certain mass range. We show that an additional quadratic coupling of the scalar field to the Ricci scalar can mitigate loss of hyperbolicity problems that have plagued previous numerical collapse studies and instead lead to well-posed evolution. This suggests that including specific additional interactions can be a successful strategy for tackling well-posedness problems in effective field theories of gravity with nonminimally coupled scalars. Our simulations also show that spherical collapse leads to black holes with scalar hair when their mass is below a mass threshold and above a minimum mass bound and that above the mass threshold, the collapse leads to black holes without hair, in line with results in the static case and perturbative analyses. For masses below the minimum mass bound, we find that the scalar cloud smoothly dissipates, leaving behind flat space
    • …
    corecore