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We study spherical collapse of a scalar cloud in scalar-Gauss-Bonnet gravity—a theory in which black
holes can develop scalar hair if they are in a certain mass range. We show that an additional quadratic
coupling of the scalar field to the Ricci scalar can mitigate loss of hyperbolicity problems that have plagued
previous numerical collapse studies and instead lead to well-posed evolution. This suggests that including
specific additional interactions can be a successful strategy for tackling well-posedness problems in
effective field theories of gravity with nonminimally coupled scalars. Our simulations also show that
spherical collapse leads to black holes with scalar hair when their mass is below a mass threshold and above
a minimum mass bound and that above the mass threshold, the collapse leads to black holes without hair, in
line with results in the static case and perturbative analyses. For masses below the minimum mass bound,
we find that the scalar cloud smoothly dissipates, leaving behind flat space.
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Introduction. Astrophysical phenomena in which gravity is
at its strongest regime, such as the collapse of a compact
object or the merger of coalescing binaries, cannot be
adequately described with perturbative techniques. To
model them in general relativity (GR), one instead needs
to formulate Einstein’s equations as an initial value problem
(IVP) and solve them numerically. Testing gravity in its
nonlinear regime, to search for new physics beyond GR or
the Standard Model of particle physics that could manifest,
requires formulating IVPs and performing numerical sim-
ulations in such beyond-GR scenarios. To obtain predictions
a well-posed IVP formulation should exist, i.e., the solution
would be unique and depend continuously on the initial
conditions.
Amajor obstacle is that inmany interesting such scenarios,

it is not obvious how to obtain a well-posed formulation
of the IVP because the new physics drastically changes the
structure of the field equations as partial differential equa-
tions. Scalar fields provide a characteristic example. No-hair

theorems [1–6] dictate that scalars cannot leave an imprint on
black holes (BHs) in most cases. All the known counter-
examples (e.g., [7–13]) require coupling the scalar to the
Gauss-Bonnet (GB) invariant, G ¼ RμνρσRμνρσ − 4RμνRμνþ
R2, where Rμνρσ, Rμν, and R being the Riemann tensor, Ricci
tensor, and Ricci scalar respectively. Einstein’s equations
are quasilinear, i.e., linear in the second derivatives of the
metric, and this is a key property in what regards their well-
posedness as an IVP. In contrast, G is clearly quadratic in
the curvature and hence quadratic in the second derivatives
of the metric. This places well-posedness in jeopardy.
One can circumvent this problem by working perturba-

tively in the coupling constants that control the deviations
from GR. Assuming that the solutions are continuously
connected to GR as the coupling goes to zero, one can
generate solutions order by order [14–19]. One disadvant-
age of this approach is that secular growth can drive it out
of its range of validity [20]. Another is that the perturbative
treatment in the coupling is not suitable for capturing
effects that involve nonlinearities in the new fields.
This last point is clearly demonstrated in the pheno-

menon of scalarization [21], first introduced in Ref. [22] for
neutron stars. It was shown more recently that scalarization
can affect BHs as well if a scalar field exhibits a suitable
coupling with the GB invariant G [11,12]. Scalarization can
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be understood as a linear tachyonic instability of the
scalar that is eventually nonlinearly quenched. The insta-
bility occurs in GR spacetimes describing compact objects,
it is controlled by interactions that are quadratic in the
scalar [23] and, for BHs, it appears below a mass [11,12]
or above a spin [24,25] threshold. The endpoint is a
compact object with a nontrivial scalar configuration,
whose properties are determined by nonlinear interactions
of the scalar [26–28]. Hence, the dynamics of theories
exhibiting scalarization cannot be fully captured working
perturbatively in the coupling constant [29–33].
Indeed, the study of the IVP for scalars nonminimally

coupled to gravity, and in particular for the broad class of
theories that lead to second-order equations described by
the Horndeski action [34], has received a lot of attention
recently [35–43]. It was established in [44] that an
appropriate formulation exists that renders the IVP well-
posed in these theories in the weakly coupled regime, i.e.,
when the nonminimal couplings of the scalar remain small.
Numerical studies, restricted so far to theories where the
scalar couples only to the GB invariant (see [45] for an
exception), have verified this result for small values of the
coupling constant that controls this coupling [31,46–48].
For larger values of the coupling constant however well-
posedness is eventually lost, as the equations tend to
change character from hyperbolic to elliptic in a region
of spacetime [31,37–39,46–49].
These theories can be viewed as nonlinear effective field

theories (EFTs), and hence as products of some truncation
of a more “fundamental” theory. A promising strategy
could be to try to employ a method inspired by viscous
relativistic hydrodynamics to render them predictive [50].
How to import such a method to gravity theories is
currently being explored [51–58]. An interesting alternative
would be to study whether additional couplings of the
scalar, which one could expect to be there in an EFT, could
actually improve a theory’s behavior and lead to well-posed
evolution. Indeed, it has been shown in Ref. [59] that an
additional coupling of the type ϕ2R leads to an improve-
ment of the hyperbolic nature of the equations for linear
perturbations in scalarization theories that contain ϕ2G
couplings. Ref. [59] consider radial linear perturbation,
whose evolution in this setup can be described by a single
second order partial differential equation (PDE). One can
then show explicitly that the character of this PDE is
affected by both of these curvature couplings, but also
depends on the background spacetime. For static back-
grounds the ϕ2R was then shown to have a positive effect
on hyperbolicity.
This motivates the numerical exploration of the effect the

ϕ2R has on hyperbolicity beyond the linearized limit.
Interestingly, that same curvature interaction has been
shown to resolve radial stability problems for scalarized
BHs [28,59], to help evade binary pulsar constraints by
suppressing neutron star scalarization [60], and to render

GR a cosmological attractor without the need for the fine-
tuning of the initial conditions [61], thereby making
scalarization models compatible with late time cosmologi-
cal dynamics (see also [62]).
Motivated by the above, we consider here a theory with

quadratic scalar couplings to both the GB invariant and the
Ricci scalar and study gravitational collapse of a scalar
cloud. We show that the Ricci coupling does indeed
improve significantly the dynamical behavior of the theory
and allows it to be predictive for values of the GB coupling
that otherwise would have yielded an ill-posed IVP. Our
numerical simulations allow us to track the formation of a
scalarized BH for suitable initial data. For data that would
have led to a formation of a BHs with mass smaller than the
existence threshold of the theory we instead see the scalar
cloud smoothly dispersing.

The theory. We consider the following action:

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ X −

�
β

2
R − αG

�
ϕ2

2

�
; ð1Þ

where g ¼ detðgμνÞ, X ¼ −∇μϕ∇μϕ=2, and we use units of
G ¼ c ¼ 1. The parameter β is a dimensionless coupling
constant while α is of dimension length squared.
Varying action (1) with respect to the metric yields,

Gμν ¼ Tϕ
μν; ð2Þ

where

Tϕ
μν ¼ −

1

4
gμνð∇ϕÞ2 þ 1

2
∇μϕ∇νϕ

−
α

2g
gμðρgσÞνϵκραβϵσγλτRλταβ∇γ∇κϕ

2

þ β

4
ðGμν þ gμν□ −∇μ∇νÞϕ2: ð3Þ

and with respect to the scalar fields, gives

□ϕ ¼
�
β

2
R − αG

�
ϕ; ð4Þ

where □ ≔ ∇μ∇μ, Gμν is the Einstein tensor, and ϵσγλτ is
the Levi-civita totally anti-symmetric tensor density.

Evolution in spherical symmetry. In this paper, we focus on
the study of the IVP in spherical symmetry. We follow
closely the prescription given in [38]. To this end, we
consider a spherically-symmetric background, with the
following ansatz in polar coordinates ðt; r; θ;φÞ

ds2 ¼ −e2Aðt;rÞdt2 þ e2Bðt;rÞdr2 þ r2dΩ2; ð5Þ

and same symmetries for the scalar field ϕ ¼ ϕðt; rÞ. We
introduce new variables
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Pðt; rÞ ≔ e−AþB
∂tϕ; Qðt; rÞ ≔ ∂rϕ: ð6Þ

With this choice of variables and the ansatz of Eq. (5), the
system (2)–(4) is reduced to three time-evolution equations
for ϕ, P and Q, and two radial constraints for A and B.
This system of equations might not always admit a well-

posed IVP. We will say that the system is well-posed if
there exists a unique solution that depends continuously on
its initial data. This will be the case if the system is strongly
hyperbolic, i.e. its principal part (the highest derivative
terms) is diagonalizable with real eigenvalues [63,64].
In numerical considerations, the characteristic speeds

constitute a useful diagnostic tool as they convey informa-
tion regarding the character of the evolution equations. In
spherical symmetry, they are given by [38]

c� ¼ 1

2

�
TrðCÞ �

ffiffiffiffi
D

p �
; ð7Þ

where C, and D depend on the functions A, B, ϕ, P, and Q,
and their derivation can be found in the Supplemental
Material [65]. The system is hyperbolic if the characteristic
speeds are real (D > 0), elliptic if they are complex (D < 0),
and parabolic if the speeds are degenerate (D ¼ 0).

Initial data. As for initial data (ID), we are free to specify
the values of ϕ and P at t ¼ 0, whereas by definition we
must have Qð0; rÞ ¼ ∂rϕð0; rÞ. We use two types of initial
data, type-I ID is a static Gaussian pulse

ϕð0; rÞ ¼ a0 exp

�
−
�
r − r0
w0

�
2
�
; Pð0; rÞ ¼ 0; ð8Þ

while type-II ID is an approximately in-going pulse

ϕð0; rÞ ¼ a0

�
r
w0

�
2

exp

�
−
�
r − r0
w0

�
2
�
; ð9Þ

Pð0; rÞ ¼ −
1

r
ϕð0; rÞ −Qð0; rÞ; ð10Þ

where a0, r0 and w0 are constants.

Numerical implementation. We employ a fully constrained
evolution scheme. The equations are discretized over the
domain ½0; T� × ½0; R� for some choice of R, and T. For a
given resolution N, the radial step Δr is given by
Δr ¼ R=N, and the time step is defined by setting the
Courant parameter to λ ¼ 0.25 i.e., Δt ¼ λΔr. Most of the
simulations presented in this work have been performed
with a spatial resolution of Δr ¼ 0.025 in a domain with
the outer boundary located at r ¼ 200. We have verified
that the results do not vary significantly when the position
of the outer boundary is changed.
To impose regularity at the centre we take a staggered

grid and perform the following expansion

ϕðt; rÞ ¼ ϕ0ðtÞ þ ϕ2ðtÞr2 þ ϕ4ðtÞr4 þOðr6Þ; ð11Þ

Aðt; rÞ ¼ A0ðtÞ þ A2ðtÞr2 þ A4ðtÞr4 þOðr6Þ; ð12Þ

Bðt; rÞ ¼ B0ðtÞ þ B2ðtÞr2 þ B4ðtÞr4 þOðr6Þ; ð13Þ

and solve for A0, A2, A4, B2, B4 by using the initial data.
Moreover, the boundary conditions at r ¼ 0 require that
∂rA ¼ 0 and ∂rB ¼ 0. One can see from the equations that
by choosing B0 ¼ 0 this is automatically satisfied. Without
such treatment at the origin, it was only possible to evolve
the system for a small subset of coupling constants. At the
outer boundary of the domain, we impose approximately
outgoing boundary conditions for ϕ,Q, P, while the metric
functions are completely specified by solving the con-
straint. Given the initial data, we solve the constraint
equations for the metric functions on the discretized
domain ½0; R� using a fourth-order Runge-Kutta (RK4)
scheme. This scheme requires knowledge of the value of ϕ,
Q, and P at intermediate virtual points and we obtain such
information by employing a fifth-order Lagrangian inter-
polator. Once we have the solution, we set Aðt; rÞ →
Aðt; rÞ − Aðt; RÞ by utilizing the remaining gauge freedom.
This guarantees that at the outer boundary of the domain,
the time function t measures the proper time of a static
observer. After obtaining the metric functions, we integrate
the variables ϕ, Q, and P in time using the method of lines
with an RK4 scheme and a sixth-order Kreiss-Olliger (KO)
dissipation term. We use a fourth-order finite differences
operator satisfying summation by parts to discretize radial
derivatives [66]. At the initial step we compute the initial
Misner-Sharp mass [67] asM ¼ Rð1 − e−2Bð0;RÞÞ=2, which
we use for the rescaling of the output. We keep track of the
formation of an apparent horizon by checking the largest
radius for which expðA − BÞ falls below a chosen tolerance,
indicating the formation of a BH.

Results. We first study how the inclusion of the Ricci term
improves the hyperbolic nature of the evolution system for
a specific value of α=M2 ¼ 0.25. In Fig. 1 we plot how the
maximum of c− and the minimum of cþ vary with time for
different values of β, type-II ID with r0 ¼ 25, w0 ¼ 6 and
for two different amplitudes a0 ¼ 0.01; 0.016. A vanishing
or rather small value of β leads to the formation of a naked
elliptic region (NER), i.e. a region of spacetime where the
characteristic speeds change sign signalling that the char-
acter of the equations has changed from hyperbolic to
elliptic without being shielded by an apparent horizon [68].
On the other hand, for a sufficiently large coupling to the
Ricci scalar, the plot suggests that this coupling heals the
problem and allows for the evolution to continue for
later times.
Motivated by these results, we explore the parameter

space more thoroughly. We start with fixed α=M2 ¼ 0.25
and type-II ID with r0 ¼ 25, w0 ¼ 6, and varied the
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amplitude a0 in the range ½0.2; 2� × 10−2 and the Ricci
coupling β in the range [0, 1]. For each of the cases
considered, we establish whether the outcome of the
evolution is flat space, NER, or the development of an
apparent horizon. Outcomes are summarized in Fig. 2. For
β ¼ 0 and low enough initial amplitudes, the theory is
predictive, and the outcome is flat spacetime. For certain
larger amplitudes an apparent horizon forms. However, we
encounter a NER both in the transition between these two
outcomes and when we increase the amplitude further.
Remarkably, increasing the value of β eventually removes
the NER in all cases.
On a few occasions, labeled by an orange star in Fig. 2, it

was not possible to conclude whether the outcome is a
formation of an apparent horizon or a NER due to the steep
gradients in the metric sector. This is due to the fact that
polar coordinates are not horizon penetrating and it does
not affect our previous conclusions regarding the effect of
the Ricci coupling. We have performed additional simu-
lations with different values of α=M2 and for the two
different types of ID that confirm the positive effect this
coupling has on hyperbolicity in the case of spherical

collapse. A summary of the other simulations performed
can be found in the Supplemental Material [65].
Since for large enough β we can track the evolution, we

delve a bit deeper into the properties of the end state. We
present three representative cases in Fig. 3, where we show
an early and a late snapshot of the evolution of the scalar
field ϕ and the metric combination exp ðA − BÞ, which
vanishes on the apparent horizon, for type-II ID with fixed
r0 ¼ 25, and w0 ¼ 6 for three different cases. (The fact that
exp ðA − BÞ vanishes also at smaller radii, once an apparent
horizon forms, is due to the use of coordinates that are not
horizon-penetrating.) For each of them, the amplitude a0 is
chosen such that it would produce an apparent horizon in
GR. From the analysis of static solutions in Ref. [28], we
know that, for large enough values of β, BHs below some
threshold mass and down to some minimum mass will
exhibit hair. BHs over the threshold mass will have no hair.
Below that minimum mass, the Schwarzschild metric is
unstable and no hairy BHs appear to exist either. The
parameters of the three panels of Fig. 3, top to bottom, have
been chosen such that the mass associated with the ID
corresponds to each of the three cases respectively. As can
be seen from the plots, the end state of evolution is in
agreement with the analysis of the static solutions. When
applicable, we provide a comparison with a static and
spherically symmetric profile, obtained by integrating
numerically the Eqs. (2)–(4), as described in [28]. Note
that the lack of perfect overlap between the scalar profile
and the static configuration is in part due to the limitations
of using polar coordinates. Remarkably, in the case where

FIG. 2. Scatter plot for α=M2 ¼ 0.25 and type-II ID with
r0 ¼ 25, w0 ¼ 6, and a varying amplitude a0. The end state of
the evolution is indicated by green squares for flat spacetimes, red
crosses for NERs, and black dots for BHs. Orange stars denote
cases for which it is difficult to conclude if the end state is a BH or
a NER (in polar coordinates). For large enough β the Ricci
coupling “cures” the loss of hyperbolicity for both flat space and
BH end states.

FIG. 1. Both plots are for α=M2 ¼ 0.25 and type-II ID with
r0 ¼ 25, w0 ¼ 6. The plot on the top is for a0 ¼ 0.01, and the
one on the bottom is for a0 ¼ 0.016. We show the maximum of
c− (solid lines) and the minimum of cþ (dashed lines) in space for
different values of β. In the top panel, for β ¼ 0, 0.35 the
characteristic speeds approach zero and will eventually cross it
and change sign. Therefore, the equations change character and
we cannot follow the evolution further, but for β ¼ 0.525
the characteristic speeds do not cross zero and the end state of
the evolution is flat geometry. In the bottom panel, we observe the
formation of an apparent horizon for β ¼ 0.5. The curves indeed
asymptote to zero, unlike the β ¼ 0, 0.2 cases.
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the static limit predicts that no (stable) BH can exist
(bottom panel), we find no impediment in the time
evolution and the scalar field dissipates to infinity leaving
a flat background.

Conclusions. We have investigated the effect of non-
minimally coupling the scalar field quadratically to the
Ricci scalar on the well-posedness of the IVP in sGB
gravity, in the case of spherical collapse. We have consid-
ered values of the corresponding coupling constant for

which black holes are radially stable [28,59], GR is a
cosmological attractor [61], and the constraints on neutron
stars scalarization are evaded [60]. Our results show that
this additional coupling, can mitigate against the formation
of a NER, which signals a loss of hyperbolicity and plagued
earlier numerical simulations. This demonstrates that
including specific additional interactions—other than those
that are essential for having interesting phenomenology,
such as BH hair—can be a successful strategy for tackling
well-posedness problems in EFTs of gravity with non-
minimally coupled scalars.
There are three important limitations to our results,

which also highlight interesting future directions. The first
one is spherical symmetry. It is likely that the coupling to
the Ricci scalar might not be sufficient to cure ill-posedness
in a less symmetric setup and that a broader range of
couplings would need to be explored. 3þ 1 simulations
would also allow us to explore numerically the nonradial
stability of scalarized black holes [69,70]. The second
limitation is that we only considered the collapse of a scalar
cloud. Work is already underway to generalize our results
to the case of stellar collapse. The third limitation is that our
numerical implementation involved coordinates that are not
horizon penetrating, and hence are not ideal for probing the
properties of the end state when the latter is a BH.
Interestingly, our simulations did allow us to confirm the

expectations arising from combining static results and
linear perturbations (e.g., [11,12,21,28,59]: that spherical
collapse will lead to BHs with scalar hair when their mass is
below a mass threshold and above a minimum mass bound
and that above the mass threshold collapse leads to BHs
without hair. Remarkably, in simulations that would form a
BH below the minimum mass bound, where stable BHs are
not know to exist, the scalar cloud smoothly dissipated,
leaving behind flat space. We are currently exploring all of
these cases in more detail in a numerical implementation
that uses horizon-penetrating coordinates, which should
allow us to trace the evolution past the formation of an
apparent horizon and probe the end state in more detail.
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