70 research outputs found

    Asymptotic distribution of global errors in the numerical computations of dynamical systems

    No full text
    International audienceWe propose an analysis of the effects introduced by finite accuracy and round off arithmetic on numerical computations of discrete dynamical systems. Our method, that uses the statistical tool of the decay of fidelity, computes the error comparing directly the numerical orbit with the exact one (or, more precisely, with another numerical orbit computed with a much higher accuracy). Furthermore, as a model of the effects of round off arithmetic on the map, we also consider a random perturbation of the exact orbit with an additive noise, for which exact results can be obtained for some prototype maps. We investigate the decay laws of fidelity and their relationship with the error probability distribution for regular and chaotic maps, both for additive and numerical noise. In particular, for regular maps we find an exponential decay for additive noise, and a power law decay for numerical noise. For chaotic maps numerical noise is equivalent to additive noise, and our method is suitable to identify a threshold for the reliability of numerical results, i.e. a number of iterations below which global errors can be ignored. This threshold grows linearly with the number of bits used to represent real numbers

    Intrinsic group behaviour: dependence of pedestrian dyad dynamics on principal social and personal features

    Full text link
    Being determined by human social behaviour, pedestrian group dynamics depends on "intrinsic properties" of the group such as the purpose of the pedestrians, their personal relation, their gender, age, and body size. In this work we quantitatively study the dynamical properties of pedestrian dyads by analysing a large data set of automatically tracked pedestrian trajectories in an unconstrained "ecological" setting (a shopping mall), whose relational group properties have been coded by three different human observers. We observed that females walk slower and closer than males, that workers walk faster, at a larger distance and more abreast than leisure oriented people, and that inter group relation has a strong effect on group structure, with couples walking very close and abreast, colleagues walking at a larger distance, and friends walking more abreast than family members. Pedestrian height (obtained automatically through our tracking system) influences velocity and abreast distance, both growing functions of the average group height. Results regarding pedestrian age show as expected that elderly people walk slowly, while active age adults walk at the maximum velocity. Groups with children have a strong tendency to walk in a non abreast formation, with a large distance (despite a low abreast distance). A cross-analysis of the interplay between these intrinsic features, taking in account also the effect of extrinsic crowd density, confirms these major effects but reveals also a richer structure. An interesting and unexpected result, for example, is that the velocity of groups with children {\it increases} with density, at least in the low-medium density range found under normal conditions in shopping malls. Children also appear to behave differently according to the gender of the parent

    Social group behaviour of triads. Dependence on purpose and gender

    Get PDF
    We analysed a set of uninstructed pedestrian trajectories automatically tracked in a public area, and we asked a human coder to assess their group relationships. For those pedestrians who belong to the groups, we asked the coder to identify their apparent purpose of visit to the tracking area and apparent gender. We studied the quantitative dependence of the group dynamics on such properties in the case of triads (three people groups) and compared them to the two pedestrian group case (dyads), studied in a previous work. We found that the group velocity strongly depends on relation and gender for both triads and dyads, while the influence of these properties on spatial structure of groups is less clear in the triadic case. We discussed the relevance of these results to the modelling of pedestrian and crowd dynamics, and examined the possibility of the future works on this subject

    Microscopic dynamics of artificial life systems

    Get PDF

    Thermodynamics of a gas of pedestrians: theory and experiment

    Get PDF
    In this paper, we perform an experiment on the interaction of pedestrians in a chaotic environment and investigate the possibility to study its results using a thermodynamic model. In contrast to simple single-file unidirectional scenarios, where only distance and time are relevant to adjust walking speed, bidirectional cases are much more complex since pedestrians can perform evading manoeuvres to avoid collisions. To better understand collision avoidance in a bidimensional environment we designed a set of experiments where people need to move chaotically for the whole time. Trajectories of moving pedestrians were obtained by tracking their head position, but a method to obtain body orientation failed, thus limiting reliable information on average quantities, i.e. average density and speed. By analysing those data, we showed that equations for thermodynamic processes can be used to describe pedestrian dynamics from medium densities or a state where interaction distances are very small. To allow combining low density cognitive aspects of collision avoidance with semi-random motion at medium densities we also developed a microscopic simulation model inspired by physics. Results show that, after calibrations, the simulation model allows to reproduce the fundamental diagram of different studies despite the very simple rules implemented. This shows that describing the statistical nature of specific crowds requires a relatively small set of rules and research should focus on cognitive/psychological aspects which are essential for understanding crowds of people

    Identification of social relation within pedestrian dyads

    Get PDF
    This study focuses on social pedestrian groups in public spaces and makes an effort to identify the type of social relation between the group members. As a first step for this identification problem, we focus on dyads (i.e. 2 people groups). Moreover, as a mutually exclusive categorization of social relations, we consider the domain-based approach of Bugental, which precisely corresponds to social relations of colleagues, couples, friends and families, and identify each dyad with one of those relations. For this purpose, we use anonymized trajectory data and derive a set of observables thereof, namely, inter-personal distance, group velocity, velocity difference and height difference. Subsequently, we use the probability density functions (pdf) of these observables as a tool to understand the nature of the relation between pedestrians. To that end, we propose different ways of using the pdfs. Namely, we introduce a probabilistic Bayesian approach and contrast it to a functional metric one and evaluate the performance of both methods with appropriate assessment measures. This study stands out as the first attempt to automatically recognize social relation between pedestrian groups. Additionally, in doing that it uses completely anonymous data and proves that social relation is still possible to recognize with a good accuracy without invading privacy. In particular, our findings indicate that significant recognition rates can be attained for certain categories and with certain methods. Specifically, we show that a very good recognition rate is achieved in distinguishing colleagues from leisure-oriented dyads (families, couples and friends), whereas the distinction between the leisure-oriented dyads results to be inherently harder, but still possible at reasonable rates, in particular if families are restricted to parent-child groups. In general, we establish that the Bayesian method outperforms the functional metric one due, probably, to the difficulty of the latter to learn observable pdfs from individual trajectories

    Social aspects of collision avoidance: A detailed analysis of two-person groups and individual pedestrians

    Get PDF
    Pedestrian groups are commonly found in crowds but research on their social aspects is comparatively lacking. To fill that void in literature, we study the dynamics of collision avoidance between pedestrian groups (in particular dyads) and individual pedestrians in an ecological environment, focusing in particular on (i) how such avoidance depends on the group's social relation (e.g. colleagues, couples, friends or families) and (ii) its intensity of social interaction (indicated by conversation, gaze exchange, gestures etc). By analyzing relative collision avoidance in the ``center of mass'' frame, we were able to quantify how much groups and individuals avoid each other with respect to the aforementioned properties of the group. A mathematical representation using a potential energy function is proposed to model avoidance and it is shown to provide a fair approximation to the empirical observations. We also studied the probability that the individuals disrupt the group by ``passing through it'' (termed as intrusion). We analyzed the dependence of the parameters of the avoidance model and of the probability of intrusion on groups' social relation and intensity of interaction. We confirmed that the stronger social bonding or interaction intensity is, the more prominent collision avoidance turns out. We also confirmed that the probability of intrusion is a decreasing function of interaction intensity and strength of social bonding. Our results suggest that such variability should be accounted for in models and crowd management in general. Namely, public spaces with strongly bonded groups (e.g. a family-oriented amusement park) may require a different approach compared to public spaces with loosely bonded groups (e.g. a business-oriented trade fair).Comment: 25 pages, 15 figures, 3 table

    Estimating social relation from trajectories

    Get PDF
    This study focuses on social pedestrian groups in public spaces and makes an effort to identify the social relation between the group members. We particularly consider dyads having coalitional or mating relation. We derive several observables from individual and group trajectories, which are suggested to be distinctive for these two sorts of relations and propose a recognition algorithm taking these observables as features and yielding an estimation of social relation in a probabilistic manner at every sampling step. On the average, we detect coalitional relation with 87% and mating relation with 81% accuracy. To the best of our knowledge, this is the first study to infer social relation from joint (loco)motion patterns and we consider the detection rates to be a satisfactory considering the inherent challenge of the problem
    • …
    corecore