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Social aspects of collision 
avoidance: a detailed analysis 
of two‑person groups 
and individual pedestrians
Adrien Gregorj 1*, Zeynep Yücel 1,3, Francesco Zanlungo 1,2,3, Claudio Feliciani 4 & 
Takayuki Kanda 3,5

Pedestrian groups are commonly found in crowds but research on their social aspects is comparatively 
lacking. To fill that void in literature, we study the dynamics of collision avoidance between pedestrian 
groups (in particular dyads) and individual pedestrians in an ecological environment, focusing in 
particular on (i) how such avoidance depends on the group’s social relation (e.g. colleagues, couples, 
friends or families) and (ii) its intensity of social interaction (indicated by conversation, gaze exchange, 
gestures etc). By analyzing relative collision avoidance in the “center of mass” frame, we were able 
to quantify how much groups and individuals avoid each other with respect to the aforementioned 
properties of the group. A mathematical representation using a potential energy function is proposed 
to model avoidance and it is shown to provide a fair approximation to the empirical observations. We 
also studied the probability that the individuals disrupt the group by “passing through it” (termed 
as intrusion). We analyzed the dependence of the parameters of the avoidance model and of the 
probability of intrusion on groups’ social relation and intensity of interaction. We confirmed that the 
stronger social bonding or interaction intensity is, the more prominent collision avoidance turns out. 
We also confirmed that the probability of intrusion is a decreasing function of interaction intensity and 
strength of social bonding. Our results suggest that such variability should be accounted for in models 
and crowd management in general. Namely, public spaces with strongly bonded groups (e.g. a family‑
oriented amusement park) may require a different approach compared to public spaces with loosely 
bonded groups (e.g. a business‑oriented trade fair).

Groups represent an important component of pedestrian  crowds1,2, and lately they have been the subject of 
many studies, focusing on such themes as their effect on crowd  dynamics3, the observation of their shape and 
 velocity1,4–9, mathematical and computational modeling of interaction  dynamics5,10–15, and dependence on social 
structure and interaction  level16–19. Many works are based on ecological  observations1,4–6,12,16–21, which may be 
argued to be indispensable in dealing with social aspects of human  behavior4,22–27.

To plan safe  buildings28–32 and manage crowds in busy public places (i.e. transportation hubs) and  events33, it 
is important to consider group behavior in crowd simulators and monitoring/predicting  tools34–37. This includes 
taking into account factors such as the structure of different types of groups, their social  relations38, and cultural 
 differences39,40 for more accurate simulations. It is also crucial to model not only the internal dynamics of the 
group, but also their reaction to the external environment, such as the presence of other pedestrians, while 
keeping in mind the aforementioned characteristics of each group. Furthermore, it is essential to consider the 
impact of the group on other pedestrians and how their behavior may be influenced by the presence of the group.

However, the majority of the studies mentioned above concentrate solely on the collective behavior of groups, 
i.e. the dynamics that drive the group to move as one cohesive unit. Mathematically oriented works on group 
dynamics may introduce the concept of a “group potential” and examine it by assuming that interactions with 
pedestrians outside the group can be approximated as white  noise5 or as an external “mean-field”  potential12 
on average. Similarly, observation-based  works6,16,18,19 often describe group properties using probability density 
functions defined by an average process that neglects the specifics of the environment.
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On the other hand, when introducing group behavior into a microscopic simulator, it is essential to incor-
porate specific rules that describe interactions between the group and the environment, particularly with sur-
rounding pedestrians. Introducing in-group dynamical rules is a logical starting point, and these can simply be 
added to the collision-avoidance rules used for  individuals41,42. For instance, if a two-person group encounters 
a single-walking pedestrian in an acceleration-based or “Social Force”  model43–45, the acceleration terms of the 
group’s pedestrians can be obtained by summing the individual-individual collision avoidance terms and those 
resulting from in-group  interaction46. The behavior of the lone pedestrian can be modeled by adding the two 
avoidance terms with respect to the pedestrians in the group. In other words, collision avoidance is treated as 
a one-to-one behavior, group dynamics are regarded as an exclusively in-group phenomenon, and the overall 
dynamics is the sum of these distinct components.

This is the (classical) linear superposition  principle47, which is typically assumed (and verified) in mechanics 
and simplifies physical models and their dynamics to a great extent. However, this principle does not necessarily 
apply to pedestrian dynamics. For instance, when a single walking pedestrian encounters a two-person group 
walking side by side, particularly if they are socially interacting, he or she may choose to avoid walking through 
them, even if it seems like the best choice from a pure collision-avoidance perspective. This intrusion decision 
would be likely, should the two pedestrians be perceived as independent.

In this work, we investigate a relatively unexplored aspect of pedestrian behavior and crowd dynamics: col-
lision avoidance of (or against) groups, and in particular, its dependence on the groups’ social attributes, which 
refer specifically to social relation and intensity of interaction.

In doing that, we use two data sets of pedestrian trajectory including annotations of groups’ social attributes 
to investigate the nature of individual-group collision avoidance. Moreover, we focus particularly on groups com-
posed of 2 people (i.e. dyads), since they are much more common than larger ones and they actually constitute 
their fundamental building block together with triads (i.e. for an easy navigation and social interaction, large 
groups break into sub-groups of 2 or 3 people)4. In addition, larger groups (of 3 or more people) may require a 
categorization of pair-wise social relations or interactions, which may be very complex to formulate or generalize. 
In that respect, we use the word group to refer simply to dyads. As groups’ counterpart in collision avoidance, we 
focus on individuals, which is a term we use to refer to people not appertaining to a group. 

Methods
Data sets. In this study, we used two data sets, namely the ATC data set and DIAMOR data set, both of 
which are reviewed and approved for studies involving human participants by the ATR ethics  board5,6, are pub-
licly available and contain trajectories derived from range  data48–50. From these trajectories, we computed the 
normalized cumulative density maps of the experiment environments shown in Fig. 1.

The data sets are annotated based on video footage for different social attributes of groups. Specifically, the 
ATC data set is annotated from the viewpoint of social relations, whereas the DIAMOR data set is annotated 
from the viewpoint of the intensity of interaction.

For the ATC data set, possible options for social relation are couples, colleagues, family and friends, which are 
determined through the domain-based approach of  Bugental51 and correspond to the domains of mating, coa-
litional, attachment and reciprocal, respectively. This annotation process yields the values presented in Table 1a.

For the DIAMOR data set, the intensity of interaction is evaluated at 4 degrees, 0 representing no-interaction 
and 1, 2, and 3 representing weak, mild and strong interaction, respectively. This annotation process yields the 
values presented in Table 1b. Note that in order not to bias the coders’ assessment, we only defined the number 
of interaction levels as 4, but we did not give any guidelines on what can be considered as weak, mild or strong 
 interaction52. Instead, we let the coders grasp a feeling about different intensities of interaction through a free-
viewing task (i.e. letting them watch the videos for 3 h before giving any labels, see Supplementary Information 
Section 1 for further details.).
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Figure 1.  The normalized cumulative density maps for (a) the ATC data set and (b) DIAMOR data set. The 
environment is discretized as a 2D mesh with a grid cell size of 10 cm by 10 cm, and the number of observations 
is counted in each grid cell. Normalization refers to the scaling of this histogram with its maximum value.
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Approach. Provided that the group and the individual do not perform any collision avoidance, we can 
expect their (relative) motion to be approximated by a straight line. We are aware that this assumption requires 
implicitly the environment to be sufficiently straight and wide (e.g. like DIAMOR, see Fig. 1b and the discussion 
in Supplementary Information Section 7) and is valid up to a reasonable range (i.e. over a few meters). Namely, 
in environments with complex geometries (curved or with many obstacles, intersections etc.), the pedestrians 
need to deviate as part of their interaction with the boundaries. Similarly, over long distances, they will eventu-
ally meet some walls, or divert towards different goals, making their relative motion bent. Nevertheless, in a 
sufficiently straight corridor and on a scale of few meters, we can expect it to be a good approximation.

This trivial assumption can be considered to serve as a hypothesis, opposite to what we actually anticipate. 
Based on such a hypothesis, the deviation of (relative) motion from a straight line can be attributed to group-
individual collision avoidance. Specifically, by measuring this deviation with respect to different social relations 
or intensities of interaction (of the group), we may understand the reflections of such group attributes on col-
lision avoidance.

This formulation presents a striking resemblance to one of the fundamental problems of Physics, namely, 
the “scattering problem”, where a particle (blue ball in Fig. 2a) is shot on a “target” (green ball), and its deviation 
from the straight line motion is used to study the interaction potential. In the original scattering problem, this 
deviation is assessed by accounting for the straight-line distance b (called the impact parameter) and closest 

Table 1.  Number of groups annotated with each (a) social relation (in ATC data set) and (b) intensity of 
interaction (in DIAMOR data set).

(a)

Social relation # of annotations

Couples 69

Colleagues 314

Family 180

Friends 253

Total 816

(b)

Intensity of interaction # of annotations

0 (no interaction) 140

1 159

2 460

3 (strong interaction) 100

Total 859
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Figure 2.  (a) Illustration of the scattering problem in physics. A mobile particle (in blue) is projected toward 
a fixed particle (in green). The impact parameter, b, is the straight-line distance between the particles, and rmin 
is the closest approach. The particle is deflected with an angle θ . (b) A typical pedestrian avoidance situation in 
the group-centered reference frame. The individual enters the vicinity of the group (gray region) at time t ′ with 
velocity vi . The straight-line distance from the individual to the group is denoted by rb . At time tc , the individual 
is closest to the group at a distance of r0.
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approach rmin , which is derived from the scattering angle θ , as an accurate measurement of particles’ location is 
very difficult. By repeating the experiment with different impact parameters and estimating the corresponding 
closest approach rmin , one can get an approximation for the potential acting on the particle.

In this study, we establish a simple duality relation between the above-mentioned problem and our group-
individual collision avoidance scenario. Namely, the impact parameter b is replaced with a straight-line distance 
rb and the closest approach can simply be measured as the shortest distance r0 between pairs of trajectory data 
points of the group and the individual. In section  “Observables” we elaborate in detail on how we define these 
observable quantities.

Using this approach from physical sciences to describe human behavior represents obviously a strong approxi-
mation, not only because human behavior is too complex to be modeled through simple physical forces, but 
also because it completely ignores the effect of the environment, which, in physical parlance, is equivalent to a 
strong and non-uniform external force. Nevertheless, as we will see, this approach still allows us to grasp the 
fundamentals of the collision dynamics between groups and individuals and to quantify the interaction. At this 
point, it is also worth stressing that the proposed model in section “Modeling” is aimed at assessing the effect of 
different social attributes in a qualitative way, rather than reproducing quantitatively human behavior.

Observables. Data preparation and transformation. We first carry out a data preparation step by (i) re-
moving atypical/non-characterizing motion (waiting, running etc.), (ii) representing the group as a single unit 
(its geometrical center) and (iii) focusing on frontal encounters of groups and individuals, for which we expect 
the pedestrians to be able to judge the social attributes of the incoming party.

Subsequently, we transform trajectories of the group g and the individual i to a reference frame, which is 
co-moving with the group. Namely, at each time instant (i) the positions of the group and the individual rg ,i are 
translated such that the group (center of mass) is positioned at the origin and (ii) their velocities vg ,i are rotated 
such that the velocity of the group is directed towards x+ . Finally, the velocities vg ,i are translated by −vg , render-
ing the group immobile. The main purpose of this transformation is to provide an easier visualization of relative 
position in 2D, which represents the position of the individual with respect to the group center, while having 
the group motion as a preferential direction. On the other hand, most of our analysis is based on the absolute 
value of the relative distance between the group center and the individual, which is rotationally invariant and 
independent of frame choice.

Relative distance r. Our analysis is based on r , the relative position between the group center and the individual,

Its time derivative is the relative velocity v,

The absolute value (norm) of r is simply denoted as r.

Straight-line distance rb. The straight-line distance rb is computed as the shortest distance from the origin (i.e. 
translated position of the group) to the line, which passes through the point at which the individual enters a pre-
defined vicinity around the group termed as window of observation. This refers to the area in the group-centered 
reference frame from −W to W meters both along x and y axes (i.e. along the group’s motion direction and the 
direction orthogonal to that). Empirically, a W of 4 m is seen to contain the most significant part of the group-
individual collision avoidance (see Fig. 2b for an illustration. Refer to  literature53,54 and Supplementary Informa-
tion Section 3 for details on the choice of W).

Let t ′ be the time instant at which the individual enters the window of observation and let r(t′) be its relative 
position at that instant. According to the hypothesis mentioned in section “Methods”, provided that there is no 
collision avoidance the individual will follow a path starting at r(t′) and move along its velocity vector at that 
instant v(t′) . In this case, the straight-line distance rb can be computed as the shortest distance between this line 
and the origin (i.e. translated position of the group),

In the analysis, in order to alleviate the impact of orientation noise on the velocity of the individual, we aver-
aged its velocity vector over four time instants (before t ′ ) and used this mean velocity in Eq. (3) instead of v(t′).

Observed minimum distance r0. The observed (i.e. actual) minimum distance r0 between the group and the 
individual is simply,

where tc is the time instant at which the individual is closest to the group. The times at which pedestrian positions 
are recorded, are obviously discrete. Nevertheless, in order to have a more accurate estimation of r0 , one can also 
interpolate r(t) between two consecutive times tk and tk+1 by using the velocity vector at time tk,

(1)r(t) = ri(t)− rg (t).

(2)v(t) = vi(t)− vg (t).

(3)rb =
||r(t ′)× v(t′)||

||v(t′)||
.

(4)r0 = min
t

(

r(t)
)

= r(tc),

(5)r(t) ≈ r(tk)+ (t − tk)v(tk), t ∈ [tk , tk+1).
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This procedure allows detecting minimum distances not only exactly at sampling instants, but also at interme-
diate time points between consecutive samples, which yields a much more accurate estimation of r0 (refer to 
Supplementary Information Section 4 for details).

Scaled distances. Groups’ interpersonal distance is shown to depend on their social relation and interaction 
 intensity17,18. Thus, we represent the distances defined above in two ways: in a group-independent way (in 
meters) and in a group-dependent way, in which the unit of distance is the average interpersonal distance of 
dyads with the given social  bonding16). In the text, we denote distances measured in meters with the normal font 
(e.g. r) and scaled distances measured in interpersonal distance units with a bar (e.g. r̄ ). Since we observed that 
results concerning scaled values are in general easier to interpret, in the main text we mostly report those (for 
further details, refer to Supplementary Information Section 5).

Analysis of collision avoidance. As mentioned in section “Methods”, our study of the collision avoidance 
dynamics between groups and individuals is fundamentally based on examining the relation between rb and r0 . 
To that end, in what follows we define two different methods to analyze this relation and then propose a method 
to model it.

Empirical relation between rb and r0 and its statistical analysis. To examine the distribution of rb versus r0 , the 
values of ̄rb are quantized into bins of 0.5 unit and for each bin, the average and standard error of the correspond-
ing values of r̄0 are computed. The choice of 0.5 as bin size was primarily driven by empirical observations. For 
certain combinations of distance rb (or r̄b ) and bonding (social relation or interaction level), setting a smaller bin 
size results in having bins with little or no data. Conversely, using a larger bin size decreases the resolution. In 
that respect, we consider a bin size of 0.5 to strike a balance between these competing factors. The results will be 
presented and discussed in section  “Results” on the relation between r 0 and r b.

Intrusions. Small groups, such as dyads, have been shown to usually prefer deviating to avoid  splitting55. None-
theless, we found situations where the individual passes through the group (i.e. between group members), and 
we refer to them as “intrusion”. For simplicity’s sake, we define the probability of intrusion as the probability of 
having r0 smaller than the group interpersonal distance (see section “Scaled distances”). We perform a statisti-
cal analysis to investigate the dependence of intrusion on the social attributes of the group. The results will be 
shown and discussed in section “Intrusion”, whereas the details of the computational procedure can be found in 
Supplementary Information Section 6.

Modeling. Many models of pedestrian collision avoidance are based on Social  Forces43–45, which may be defined 
through a potential. It has been reported that using position-dependent potentials in modeling of pedestrian 
collision avoidance fails to reproduce detailed behavior. Even if we assume that a Social Force approach may 
reproduce actual human behavior, the corresponding potential should at least be velocity-dependent and based 
not on current distance but on future distance at the moment of predicted closest  approach13,45. Nevertheless, 
determining a potential that may, at least qualitatively, describe the collision avoidance between groups and 
individuals, represents an important first step towards a more realistic quantitative modeling.

Let us first review how we can study the potential energy between two interacting bodies in physics (note that 
while discussing the physical model, we use the word “interaction” to refer to the effect that the bodies exert on 
each other.). The study of such a scattering problem is obviously a cornerstone of physics, and the non-Quantum 
formalism analyzed in this section was used to study such important problems as the structure of  atoms56 and 
gravitational lens effect due to space-time  curvature57 among others. In general, the bodies in focus are very 
complex and composed of many particles (e.g. planets, stars). Nevertheless, due to the scale of the problem, they 
may be treated as point particles themselves (in our “pedestrian scenario”, the group will be represented with a 
single point).

Their interaction is determined by a potential energy U(r) , which is in general a function of only relative 
position (a result connected to invariance under space translations and equivalent to Newton’s third  law58). 
Nevertheless, in many important applications, the potential is central, i.e. rotationally invariant, and depends 
only on the magnitude of the distance, U(r).

In such a case, it is shown that the interesting (potential-dependent) dynamics is studied in the r  variable56. 
Defining the reduced mass µ as

where m1 and m2 are the masses of the two bodies, the angular momentum L and energy E result to be constants 
of motion,

In a scattering problem, the system is not bound and r diverges for t → ±∞ . In most physical applications, we 
can only measure the scattering angle and the velocity far before/after the interaction. We can then compare the 
measured angle with a theoretical result involving an integral. However, if the full trajectory is known, a simpler 
way to study the system is available.

(6)µ =
m1m2

m1 +m2

,

(7)E =
µ

2
ṙ2 +

||L||
2

2µr2
+ U(r).
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We study the system far before interaction, i.e. for t → −∞ and r → +∞ , and call the corresponding asymp-
totic speed v∞ . We see that the absolute value of angular momentum can be written as

where the impact parameter b is the minimum value of r assumed in case of straight motion (i.e. no interaction). 
Assuming lim

r→+∞
U(r) = 0 , we obtain

On the other hand, since we actually have interaction, the minimum distance rmin in the observed trajectory 
turns out to be different than b, i.e. rmin  = b . At r = rmin , having a minimum, we have ṙ = 0 and the correspond-
ing energy is

Conservation of energy implies E∞ = E0 and provides the following relation for the value of U(r) at r = rmin

This relation enables studying the potential U(r), provided that v∞ , b and rmin are measured. In modeling colli-
sion avoidance between pedestrians based on the above framework, we assume that

In other words, the force is assumed to be repulsive. Namely, denoting F1 as the force acting on body 1, and 
recalling the usual definition r = r1 − r2 , we have

We apply these physical concepts in a pedestrian scenario to model the “collision avoidance potential” between 
groups and individuals. As mentioned in section “Methods”, rb is inspired by the impact parameter b, whereas 
r0 corresponds to the closest approach rmin . Thus, the term v∞ in Eq. (11) should be approximated by using the 
relative velocity when rb is computed. But since pedestrian velocities have a small variation, we may consider it 
to be almost constant. In a similar way, as usual when studying “forces” that determine the pedestrians’ cogni-
tive decisions, all masses are considered to be equal (to one)43 and we may remove µ from the equation. Finally, 
since the approach is completely of a qualitative nature, we opt for ignoring the overall constant in Eq. (11) and 
study the following simplified version,

to which we will refer to as the “collision avoidance potential” (defined as a dimensionless pure number).
A comment on Eq. (14) is probably needed. This equation does not represent the functional form of the 

dependence of the potential on r. Instead, it shows which is the value of U attained at r0 given that the straight-line 
distance is rb . Different values of rb allow us to probe different values of U, where the smaller b is, the higher U ′ is. 
Nevertheless, Eq. (14) clearly allows us only to probe values U ′ < 1 . This is due to the fact that in the computation 
of U ′ the value of the initial kinetic energy

is taken as fixed, and we are measuring the probed values of the collision avoidance potential as multiples of such 
kinetic energy. Note that in particle physics short distances are indeed probed by using very high kinetic energies.

The results are shown and discussed in section “Potential”, whereas the details of the computational procedure 
are described in Supplementary Information Section 7. In addition, in section  “Comparison to individual–indi-
vidual collision avoidance” we also show the results concerning a similarly defined potential describing indi-
vidual–individual collision avoidance.

Results and discussion
Results on relative frame pdfs. The group-centered reference frame is particularly suitable to study the 
2D distribution of r , i.e. of the position of the individual around the group. Figures 3 and 4 show the 2D distri-
butions in relation to different social relations and interaction intensities of the group, respectively, using as a 
distance unit the groups’ average interpersonal distance. Note that, in order to highlight the specificities of each 
social attribute as compared to the whole, we depict the difference between a given attribute and the overall 2D 
average, which is computed as an unweighted average of the distributions of all relating cases. Therefore, positive 

(8)L ≡ ||L|| = µv∞b,

(9)E∞ =
µ

2
v2
∞
.

(10)E0 =
µv2

∞
b2

2r2min

+ U(rmin).

(11)U(r = rmin) =
µv2

∞

2

r2min − b2

r2min

.

(12)
dU(r)

dr
< 0 ∀r ⇒ U(r) > 0 ∀r.

(13)F1 = −∇U(r) = −
dU(r)

dr

r

r
.

(14)U ′(r = r0) =
r20 − r2b

r20
,

(15)µv2
∞

2
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values depict an increased likeliness of presence for the individual, while, reciprocally, negative values depict a 
decreased likeliness. 

The effects of varying social relations are presented in Fig. 3. Comparing Fig. 3a with b, d, one may notice 
that individuals do not have a prominent preference to pass on the right or left side of colleagues, whereas they 
prefer to pass more on the right for couples and on the left for friends (as compared to the overall average). In 
addition, they pass with a very small distance ( r ≈ 0 ) more often for families (see Fig. 3c) than for other kinds of 
social relations, which may be due to a more dispersed configuration of family group  members18. On the other 
hand, in Fig. 3b we see very clearly two low probability horizontal stripes, roughly located around y = ±1 . As 
these stripes correspond more or less to group members’ positions, they suggest that the group’s abreast forma-
tion is rarely disturbed in couples.

Concerning social interaction, the difference with respect to varying intensities is much more noticeable, 
the most interesting one being between 0 and 3 (see Fig. 4a,d). Namely, concerning groups annotated as non-
interacting (i.e. with 0 intensity of interaction), the center stripe presents positive values, while the lower and 
upper stripes y ≈ ±2.5 present negative values, indicating that individuals are more likely to maintain a trajec-
tory directly facing the group (possibly even intruding it) (see Fig. 4a). Reciprocally, from Fig. 4d we can see 
that individuals are less likely to position themselves on a colliding trajectory with the group and prefer to place 
themselves on its side, when it has a high intensity of interaction. There are interesting left/right asymmetries in 
Fig. 4, which may be related to the tendency of Japanese pedestrians to move mainly on the left, and overtake on 
the  right59. This tendency may cause low-interaction groups, when they are not intruded on, to have a relatively 
higher possibility to be passed on their left than on their right, since they are expected to have a higher speed 
than highly interacting ones. We do not have a clear interpretation for the right/left asymmetry between the 
couples distribution in Fig. 3b and the friends distribution in Fig. 3d.
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Figure 3.  2D probability distribution of individuals’ position r̄ relative to overall average. Positions are shown 
in the group-centered reference frame and the x axis is aligned with the direction of motion of the group. Each 
sub-figure depicts the difference between the distribution relating to a certain social relation and an unweighted 
average concerning all social relations. (a) Colleagues, (b) couples, (c) families, (d) friends. The color scales are 
adjusted for highlighting the differences.
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Results on the relation between r̄
0
 and r̄

b
. We divide the range of r̄b into bins of 0.5 unit and compute 

the mean and standard error of r̄0 corresponding to each bin. The results are depicted in Fig.  5a,b. Smaller 
values of r̄b indicate that the straight line trajectory of the individuals would require them to pass very close to 
the group. In addition, r̄b < 0.5 signifies a distance smaller than half of the group interpersonal distance, which 
means that the individual would need to intrude on the group (if moving straight).

Concerning social relations, we observe that when r̄b < 0.5 , the average value of r̄0 is considerably larger for 
couples and friends than for colleagues and families (see Fig. 5a). In other words, there is a strong resistance 
against intruding on groups with the former social relations. Concerning intensity of interaction, we have a 
similar observation for higher intensities of interaction (from 1 to 3, see Fig. 5b), while for 0 intensity we have 
r̄0 ≈ r̄b for all r̄b values.

These observations make us believe that the social attributes of the group do impact group-individual collision 
avoidance. Specifically, there is larger avoidance, when there is a strongly-bonded group involved (i.e. couples, 
friends or with high intensity of interaction).

The statistical significance of these results can be assessed through an ANOVA (see Supplementary Informa-
tion Section 8 for considerations regarding the necessary assumptions). To that end, we compute the p values 
concerning each bin shown in Fig. 5a,b and demonstrate the results in Fig.  5c,d, respectively. Regarding lower 
values of r̄b (i.e. r̄b < 1.5 ), we observe statistical significance (i.e. p < 0.05 ) concerning both social relation and 
intensity of interaction. Regarding larger values of r̄b (i.e. r̄b > 2 ), there is no statistically significant difference, 
as it can be expected observing the overlapping curves in the corresponding regions of Fig. 5a,b.

Let us also notice that in Fig. 5b concerning the DIAMOR data set, for r̄b ≫ 1 , we have r̄b ≈ r̄0 regardless of 
intensity of interaction, in agreement with the hypothesis that collision avoidance can be ignored for such values 
(Eq. (14)). The fact that this is not the case in ATC, where we actually observe r̄b > r̄0 for r̄b ≫ 1 , is considered 
to be an effect of the ATC environment being less straight and narrower (see Fig. 1a).
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Figure 4.  2D distribution of individuals’ position r̄ relative to overall average. Positions are shown in the group-
centered reference frame and the x axis is aligned with the direction of motion of the group. Each sub-figure 
depicts the difference between the distribution relating to a certain intensity of interaction and an unweighted 
average of all intensities. (a) 0, (b) 1, (c) 2, (d) 3. The color scales are adjusted for highlighting the differences.



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5756  | https://doi.org/10.1038/s41598-023-32883-z

www.nature.com/scientificreports/

To compensate for this effect in the computation of the potential, we perform a linear correction in the com-
putation of r̄b in section “Potential”. The details of this correction are presented in Supplementary Information 
Section 7. In addition, results concerning the relation between rb and r0 , i.e. values measured in meters and not 
scaled with group interpersonal distance, are shown in section “Comparison to individual–individual collision 
avoidance”.

Intrusion. It is noticeable that the observed minimum distance r̄0 reaches particularly low values in some 
encounters. For instance, the first bin in Fig. 5b for intensity of interaction 0 presents an average value of r̄0 
smaller than 1. This means that the distance from the center of mass of the group to the individual gets smaller 
than the group interpersonal distance (see Supplementary Information Section 5). In such cases, it is likely that 
the individual is actually intruding on the group instead of deviating, essentially following the straight line tra-
jectory.

To quantify the frequency of such intrusions, we computed the probability of r̄0 being smaller than 1. Specifi-
cally, this is an empirical probability computed as the ratio of the number of observations with ̄r0 < 1 to the total 
number of observations (for a given bin of r̄b ). The results are shown in Fig. 6a,b. Here, we see that there is indeed 
a correlation between the probability of intrusion and the social bonding of the group being intruded on. Namely, 
individuals have a higher probability to intrude on loosely-bonded groups (i.e. colleagues, families and non- or 
slightly-interacting groups) than strongly-bonded groups (couples, friends and strongly interacting groups).

The statistical significance of this observation is assessed through Pearson’s χ2 test and the relating p-values 
are presented in Fig. 6c,d. The difference in probability of intrusion concerning different social relations is 
significant ( p < 0.05 ), when r̄b is smaller than 1.5. On the other hand, for the intensity of interaction we have a 
significant difference of intrusion for r̄b < 1.
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Figure 5.  Observed minimum distance r̄0 as a function of the undisturbed straight-line distance r̄b (a) for 
various social relations and (b) intensities of interaction of the group. Error bars report standard error intervals. 
The dashed line corresponds to the r̄0 = r̄b linear dependence. p-values for the ANOVA of r̄0 (c) for various 
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Actually, the average distance of a group member from the group center is r̄0 = 0.5 . The corresponding 
analysis for the probability of having r̄0 < 0.5 is shown in Supplementary Information Section 6.

Potential. As described in section “Modeling”, we study U ′(r0) (see Eq. (14)) to model the “potential” repre-
senting the interaction between the group and the individual. To that end, we again quantize the values of r̄b and 
compute the corresponding mean values of r̄0 before calculating the values of the potential U ′(r̄0) for each bin. 
Figure 7a,b show the relating values. Additionally, to extrapolate outside the range available, a function of the 
form k/rβ is fitted to the data using non-linear least squares, illustrated with dashed lines in Fig. 7a,b.

Interestingly, the potential is shown to be affected by the nature of the social bonding of the group. As a matter 
of fact, stronger bondings (e.g. couples, high intensity of interaction) generate a “stronger potential” (i.e. with a 
steeper negative derivative) which, as seen in sections “Results on the relation between r̄0 and r̄b” and “Intrusion” 
“causes” individuals to deviate more, and significantly decreases their probability to intrude on the group. On the 
other hand, loosely-bonded groups (e.g. colleagues and non- or slightly-interacting groups) generate a weaker 
potential, resulting in a smaller deviation and a higher chance of intrusion.

The discussion above concerns results obtained using distances scaled with the group interpersonal distance; 
results concerning computations performed using distances measured in meters are shown in section “Com-
parison to individual–individual collision avoidance”.

Comparison to individual–individual collision avoidance. Many practitioners simulate crowds on 
the basis of individuals. Thus, it is interesting to compare the above-mentioned potentials with results obtained 
for individual–individual interaction. The results (using distances measured in meters, i.e. not scaled by group 
interpersonal distance) are shown in Fig. 7c,d.

Note that groups are larger (than individuals) and expected to exert a stronger “social force”, but they are also 
susceptible to being disrupted and intruded on (passed at ≈ 0 distance to their geometrical center). Also, while 
it is expected (statistically) that collision avoidance between individuals is symmetric, it may be that groups 
interact less than individuals by deviating very little. These effects seem to balance and potentials for collision 
avoidance between individuals are quite similar to those with groups.

Nevertheless, it may be seen that potentials describing low intensity social interactions, colleagues and fami-
lies have typically a less steep derivative than the one for individual-individual encounters, while the opposite is 
observed for high-intensity social interactions and (in particular) for couples.
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Figure 6.  Probability that the distance r̄0 is smaller than 1 for (a) for various social relations and (b) intensities 
of interaction of the dyad. Pearson’s χ2 p-values for the hypothesis of independence of the frequencies of 
samples verifying r̄0 < 1 for (c) for various social relations and (d) intensities of interaction (of the group).
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Conclusion
In this work, we analyzed how group-individual pedestrian collision avoidance depends on the group’s social 
relation and social interaction intensity.

In detail, we verified that when straight motion (i.e. absence of collision avoidance) would lead to a possible 
collision, the actual minimum distance r0 between the individual and the group is a growing function of social 
interaction intensity, and assumes a higher value for couples and friends. Similarly, individuals have a stronger 
tendency to intrude or disrupt a group by passing at a distance comparable to the group interpersonal distance 
when they face groups with low interaction intensity and colleagues and families, as can be verified both by 
studying 2D distance probability distributions, and by performing a statistical analysis on the probability that 
the minimum distance becomes smaller than the group interpersonal distance.

We also introduced a potential to study the dependence of intensity of collision avoidance on relative distance, 
by mimicking the theoretical modeling of two-body scattering in classical mechanics. This approach, which may 
be used as a guiding light in the development of a social force model of individual–group interaction, shows again 
that the potential determining collision avoidance tends to grow much faster with decreasing distance values (i.e. 
it has a steeper negative derivative) for strongly interacting groups, couples and families.

The latter result is particularly clear when studied using the group’s average interpersonal distance as a length 
unit. A further comment on this result may be necessary, since the tendency of individuals not to pass through 
strongly bonded dyads (such as couples, friends and strongly interacting dyads) may be due not only to some 
kind of social rule, but also to the fact that passing through these groups is actually harder due to the narrower 
space between them.

To this respect, we should finally comment also on the results concerning families, which may be a little coun-
ter-intuitive by suggesting that families are somehow perceived as weakly interacting and are often “intruded”60. 
It should be stressed that, as reported by Zanlungo et al.16, the families in the ATC data set are mostly composed 
of parent-child pairs, that often do not walk abreast, or at least have a weaker tendency to walk abreast. The 
authors of the original study justify this tendency by referring to “the erratic behavior of children”, but it may 
also be related to a stronger hierarchical structure in a parent-child dyad with respect to couples, friends and 
 colleagues16. It may thus be argued that the tendency of individuals to approach families at a shorter distance 
may depend on families being less spatially structured, or correspondingly having a higher tendency to change 
their spatial structure. Such role of group spatial structure in individual-group interaction could be the subject 
of future studies, possibly when larger data sets collected in more suitable environments will be available.
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We believe that our results and inferences point out interesting variabilities in pedestrian motion due to social 
aspects of human  navigation61. A valuable implication of our study is that infrastructure design could be adapted 
to the nature of the social bonding of its users. We can speculate that, for instance, if a particular environment 
is known to be frequented mostly by strongly bonded groups, such as an amusement park, providing additional 
space (e.g. by widening corridors or walkways) to allow for collision avoidance may make it more comfortable. 
Nevertheless, these qualitative considerations should ultimately be corroborated with quantitative simulation 
models that include our findings. By taking into account the social dynamics of the people using a particular 
space, designers and architects could create environments that are more conducive to safe and efficient move-
ment. This could help to reduce the risk of accidents and improve overall user experience. We also hope that using 
models which account for the expected social composition of the crowd may help in improving the performance 
of tracking and simulation  systems62.

Data availibility
The data sets analyzed during the current study are available at https:// dil. atr. jp/ ISL/ sets/ groups/.
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