795 research outputs found
Epigenetic diversity of clonal white poplar (<i>Populus alba</i> L.) populations: could methylation support the success of vegetative reproduction strategy?
The widespread poplar populations of Sardinia are vegetatively propagated and live in different natural environments forming large monoclonal stands. The main goals of the present study were: i) to investigate/measure the epigenetic diversity of the poplar populations by determining their DNA methylation status; ii) to assess if and how methylation status influences population clustering; iii) to shed light on the changes that occur in the epigenome of ramets of the same poplar clone. To these purposes, 83 white poplar trees were sampled at different locations on the island of Sardinia. Methylation sensitive amplified polymorphism analysis was carried out on the genomic DNA extracted from leaves at the same juvenile stage. The study showed that the genetic biodiversity of poplars is quite limited but it is counterbalanced by epigenetic inter-population molecular variability. The comparison between MspI and HpaII DNA fragmentation profiles revealed that environmental conditions strongly influence hemi-methylation of the inner cytosine. The variable epigenetic status of Sardinian white poplars revealed a decreased number of population clusters. Landscape genetics analyses clearly demonstrated that ramets of the same clone were differentially methylated in relation to their geographic position. Therefore, our data support the notion that studies on plant biodiversity should no longer be restricted to genetic aspects, especially in the case of vegetatively propagated plant species
DIMCloud: a distributed framework for district energy simulation and management
To optimize energy consumption, it is needed to monitor real-time data and simulate all energy flows. In a city district context, energy consumption data usually come from many sources and encoded in different formats. However, few models have been proposed to trace the energy behavior of city districts and handle related data. In this article, we introduce DIMCloud, a model for heterogeneous data management and integration at district level, in a pervasive computing context. Our model, by means of an ontology, is able to register the relationships between different data sources of the district and to disclose the sources locations using a publish-subscribe design pattern. Furthermore, data sources are published as Web Services, abstracting the underlying hardware from the user’s point-of-view
A new distributed framework for integration of district energy data from heterogeneous devices
The introduction of ”smart” low-cost sensing (and actuating) devices enabled the recent diffusion of technological products within the ”Internet of Things” paradigm. In a city district context, such devices are crucial for visualization and simulation of energy consumption trends, to increase the energy distribution network efficiency and promote user awareness. Nevertheless, to unlock the potential of this technology, many challenges have to be faced at district level due to the current lack of interoperability between heterogeneous data sources. In this work, we introduce an original infrastructure model, which efficiently manage and integrate district energy data
District data management, modelling and visualization via interoperability
Data management has been one of the most interesting research fields within the smart city framework over the last years, with the aim of optimizing energy saving at district level. This topic involves the creation of a 3D city model considering heterogeneous datasets, such as Building Information Models (BIMs), Geographical Information Systems (GISs) and System Information Models (SIMs), taking into account both buildings and the energy network. Through the creation of a common platform, the data sharing was allowed starting from the needs of the users, such as the public administrator, the building manager and the energy professional. For this reason, the development of a District Information Modelling (DIM) methodology for the data management, related to the energy saving and CO2 emission, is considered the focus of this paper. It also presents a specific tool developed for the comparison of energy data in a selected district: the Benchmarking Tool
A scalable middleware-based infrastructure for energy management and visualization in city districts
Following the Smart City views, citizens, policy makers and energy distribution companies need a reliable and scalable infrastructure to manage and analyse energy consumption data in a city district context. In order to move forward this view, a city district model is needed, which takes into account different data-sources such as Building Information Models, Geographic Information Systems and real-time information coming from heterogeneous devices in the district. The Internet of Things paradigm is creating new business opportunities for low-cost, low-power and high-performance devices. Nevertheless, because of the "smart devices" heterogeneity, in order to provide uniform access to their functionalities, an abstract point of view is needed. Therefore, we propose an distributed software infrastructure, exploiting service-oriented middleware and ontology solutions to cope with the management, simulation and visualization of district energy data
IoT software infrastructure for Energy Management and Simulation in Smart Cities
This paper presents an IoT software infrastructure that enables energy management and simulation of new control policies in a city district. The proposed platform enables the interoperability and the correlation of (near-)real-time building energy profiles with environmental data from sensors as well as building and grid models. In a smart city context, this platform fulfills i) the integration of heterogeneous data sources at building and district level, and ii) the simulation of novel energy policies at district level aimed at the optimization of the energy usage accounting also for its impact on building comfort. The platform has been deployed in a real world district and a novel control policy for the heating distribution network has been developed and tested. Results are presented and discussed in the paper
At the intersection of cultural and natural heritage: Distribution and conservation of the type localities of Italian endemic vascular plants
We conducted a GIS spatial analysis with the aim of providing the first quantitative large-scale overview of the distribution patterns of 1536 type localities (loci classici) of 1216 Italian endemic vascular plants and their relationship with a set of descriptive variables. Whereas some variables were used to model the presence-absence distribution patterns of the type localities for the whole set of endemics as well as for the subset of narrow endemics, others (e.g., presence inside or outside protected areas and Italian Important Plant Areas) were considered with the purpose of assessing potential assets or risks for conservation.
The largest number of type localities was found within the Mediterranean biogeographic region (1134), followed by the Alpine region (306) and Continental region (96). A total of 670 locations are located on islands, whereas 866 are located on the Italian mainland (139 and 124 in the case of narrow endemics, respectively). A large number of type localities are located in mountainous areas and along the coastline, which can be seen as a potential risk for conservation. On the contrary, we detected a positive correlation with the distance from roads, which might be considered to be an asset. Importantly, 1030 type localities fall inside protected areas, whereas 506 localities fall outside protected areas, with 259 of these unprotected localities on islands.
We propose considering the results of the analysis of the distribution of type localities of Italian endemics to be a strategic tool for conservation planning and resource management. Application of plant micro-reserves and integration of diverse legislation tools are suggested to strengthen efforts and increase conservation success
Notulae to the Italian alien vascular flora 6
In this contribution, new data concerning the distribution of vascular flora alien to Italy are presented. It includes new records, confirmations, exclusions, and status changes for Italy or for Italian administrative regions of taxa in the genera Acalypha, Acer, Canna, Cardamine, Cedrus, Chlorophytum, Citrus, Cyperus, Epilobium, Eucalyptus, Euphorbia, Gamochaeta, Hesperocyparis, Heteranthera, Lemna, Ligustrum, Lycium, Nassella, Nothoscordum, Oenothera, Osteospermum, Paspalum, Pontederia, Romulea, Rudbeckia, Salvia, Sesbania, Setaria, Sicyos, Styphnolobium, Symphyotrichum, and Tradescantia. Nomenclature and distribution updates, published elsewhere, and corrigenda are provided as supplementary material
Notulae to the Italian alien vascular flora: 14
In this contribution, new data concerning the distribution of vascular flora alien to Italy are presented. It includes new records, confirmations, and status changes for Italy or for Italian administrative regions. Nomenclatural and distribution updates, published elsewhere, and corrections are provided as Suppl. materia
Notulae to the Italian alien vascular flora: 14
In this contribution, new data concerning the distribution of vascular flora alien to Italy are presented. It includes new records, confirmations, and status changes for Italy or for Italian administrative regions. Nomenclatural and distribution updates, published elsewhere, and corrections are provided as Suppl. material
- …