27 research outputs found

    Noise monitoring in Monza (Italy) during COVID-19 pandemic by means of the smart network of sensors developed in the LIFE MONZA project

    Get PDF
    Abstract As a scientific consequence of the spread of the COVID-19 pandemic, several initiatives have taken place in order to monitor noise levels trends before and after the lock down phase in several Italian and European cities. In Monza (Italy), since June 2017, a new smart noise monitoring system consisting of 10 sensors developed in the frame of the LIFE MONZA project is continuously measuring acoustic data every second and transmitting them hourly to a dedicated server. The sensors are located both along a main street of the Libertà district characterised by high traffic flows and along secondary streets of the district; they are positioned on (preferably sensitive) buildings facades and on streetlamps. In the present paper results of a study concerning changes occurred in noise levels trends before and during the lock down phase for the smart sensors are presented, together with a comparison with noise levels collected by the same sensors in the equivalent months of the previous year. Some preliminary considerations regarding the reliability of the sensors themselves are also provided

    LIFE+2010 QUADMAP Project: results obtained from the analysis of data collected during the application of the new methodology to the pilot quiet areas

    Get PDF
    Since the 90s, quiet areas have commonly been considered as places to be acoustically preserved or where acoustic interventions should be implemented to reduce noise levels. With the enforcement of the Environmental Noise Directive in 2002, a formal definition of a ‘quiet area in agglomeration’ and a ‘quiet area in open country’ was established. However, many Member States complained about the absence of guidelines regarding the identification and management of quiet areas. The LIFE QUiet Areas Definition and Management in Action Plans (QUADMAP) project started in 2011 to contribute to the Directive’s incomplete requirements for quiet areas. The project’s main result has been the introduction of a flexible methodology for the selection, analysis and management of quiet areas in agglomeration in which both acoustic and nonacoustic parameters are evaluated. The current paper illustrates the analyses carried out on the data collected during the application of the selection, analysis and management phases of the developed methodology in the different pilot cases selected during the Project. Mentioned analysis are aimed at verifying the benefits of the proposed complementary selection criteria (‘relative quiet urban areas’ identification criteria and ‘homogeneous urban areas’ subdivision criteria), at defining the measurement periods most representative of the areas and the acoustic and nonacoustic parameters to be considered as the most significant.The authors would like to thank all who sustained this research, specifically the European Commission for its financial contribution to the QUADMAP project into the LIFE+2010 Programme

    Statistical analysis of acoustic data. Combining objective and subjective measures.

    Get PDF

    Active noise systems for reducing outdoor noise

    Get PDF

    Design and experimental tests of active control barriers for low-frequency stationary noise reduction in urban outdoor environment

    Get PDF
    Active noise control (ANC) techniques are based on the emission of an antiphase signal in order to cancel the noise produced by a primary source. ANC has been successfully applied especially for reducing noise in confined environments, such as headphones and ducts. In this study, we present an application of ANC concepts to the design of an anti-noise barrier for an outdoor environment and its experimental testing. Even though passive techniques are effective in noise reduction at middle-high frequencies, they become less efficient at low frequencies (below 300 Hz) due to the limited dimensions of commonly deployable barriers. In this paper, we analyze the properties of a low-cost active noise system able to efficiently operate on stationary, almost pure-tone, low-frequency noise, such as that produced by electrical transformers and reactors in power and transformation plants. A prototype has been implemented and on-the-field experimental tests have been carried out. The results (confirmed also by numerical simulations) demonstrate a remarkable efficiency in the far field, with a reduction up to 15 dB with respect to the absence of the ANC system

    Life Monza: project description and actions’ updating

    Get PDF
    The introduction of Low Emission Zones, urban areas subject to road traffic restrictions in order to ensure compliance with the air pollutants limit values set by the European Directive on ambient air quality (2008/50/EC), is a common and well-established action in the administrative government of cities. The impacts on air quality improvement are widely analysed, whereas the effects and benefits concerning the noise have not been addressed in a comprehensive manner. As a consequence, the definition, the criteria for the analysis and the management methods of a Noise Low Emission Zone are not clearly expressed and shared yet. The LIFE MONZA project (Methodologies fOr Noise low emission Zones introduction And management - LIFE15 ENV/IT/000586) addresses these issues. The first objective of the project, co-funded by the European Commission, is to introduce an easy-replicable method for the identification and the management of the Noise Low Emission Zone, an urban area subject to traffic restrictions, whose impacts and benefits regarding noise issues will be analyzed and tested in the pilot area of the city of Monza, located in Northern Italy. Background conditions, structure, objectives of the project and actions’ progress will be discussed in this article
    corecore