80 research outputs found

    Phylogenetically distinct equine influenza viruses show different tropism for the swine respiratory tract

    Get PDF
    Influenza A viruses circulate in a wide range of animals. H3N8 equine influenza virus (EIV) is an avian-origin virus that has established in dogs as canine influenza virus (CIV) and has also been isolated from camels and pigs. Previous work suggests that adaptive mutations acquired during EIV evolution might have played a role in CIV emergence. Given the potential role of pigs as a source of human infections, we determined the ability of H3N8 EIVs to replicate in pig cell lines and in respiratory explants. We show that evolutionary distinct EIVs display different infection phenotypes along the pig respiratory tract, but not in cell lines. Our results suggest that EIV displays a dynamic host range along its evolutionary history, supporting the view that evolutionary processes play important roles on host range and tropism, and also underscore the utility of using explants cultures to study influenza pathogenesis

    Risk Analysis of the Future Implementation of a Safety Management System for Multiple RPAS Based on First Demonstration Flights

    Get PDF
    The modern aeronautical scenario has welcomed the massive diffusion of new key elements, including the Remote Piloted Aircraft Systems (RPAS), initially used for military purposes only. The current decade has seen RPAS ready to become a new airspace user in a large variety of civilian applications. Although RPAS can currently only be flown into segregated airspaces, due to national and international Flight Aviation Authoritiesâ€Č (FAAs) constraints, they represent a remarkable potential growth in terms of development and economic investments for aviation. Full RPAS development will only happen when flight into non‐segregated airspaces is authorized, as for manned civil and military aircraft. The preliminary requirement for disclosing the airspace to RPAS is the implementation of an ad hoc Safety Management System (SMS), as prescribed by ICAO, for every aeronautical operator. This issue arises in the context of the ongoing restructuring of airspaces management, according to SESAR‐JU in Europe and NextGen in the USA (SESAR‐JU has defined how RPAS research should be conducted in SESAR 2020, all in accordance with the 2015 European ATM Master Plan). This paper provides the basis to implement a risk model and general procedures/methodologies to investigate RPAS safety, according to the operational scenarios defined by EASA (European Aviation Safety Agency). The study is based on results achieved by multiple‐RPAS experimental flights, performed within the RAID (RPAS‐ATM Integration Demonstration) project

    Vertical transmission of zika virus and its outcomes:a Bayesian synthesis of prospective studies

    Get PDF
    BACKGROUND: Prospective studies of Zika virus in pregnancy have reported rates of congenital Zika syndrome and other adverse outcomes by trimester. However, Zika virus can infect and damage the fetus early in utero, but clear before delivery. The true vertical transmission rate is therefore unknown. We aimed to provide the first estimates of underlying vertical transmission rates and adverse outcomes due to congenital infection with Zika virus by trimester of exposure.METHODS: This was a Bayesian latent class analysis of data from seven prospective studies of Zika virus in pregnancy. We estimated vertical transmission rates, rates of Zika-virus-related and non-Zika-virus-related adverse outcomes, and the diagnostic sensitivity of markers of congenital infection. We allowed for variation between studies in these parameters and used information from women in comparison groups with no PCR-confirmed infection, where available.FINDINGS: The estimated mean risk of vertical transmission was 47% (95% credible interval 26 to 76) following maternal infection in the first trimester, 28% (15 to 46) in the second, and 25% (13 to 47) in the third. 9% (4 to 17) of deliveries following infections in the first trimester had symptoms consistent with congenital Zika syndrome, 3% (1 to 7) in the second, and 1% (0 to 3) in the third. We estimated that in infections during the first, second, and third trimester, respectively, 13% (2 to 27), 3% (-5 to 14), and 0% (-7 to 11) of pregnancies had adverse outcomes attributable to Zika virus infection. Diagnostic sensitivity of markers of congenital infection was lowest in the first trimester (42% [18 to 72]), but increased to 85% (51 to 99) in trimester two, and 80% (42 to 99) in trimester three. There was substantial between-study variation in the risks of vertical transmission and congenital Zika syndrome.INTERPRETATION: This preliminary analysis recovers the causal effects of Zika virus from disparate study designs. Higher transmission in the first trimester is unusual with congenital infections but accords with laboratory evidence of decreasing susceptibility of placental cells to infection during pregnancy.FUNDING: European Union Horizon 2020 programme

    At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions.

    Get PDF
    As members of the plant microbiota, arbuscular mycorrhizal fungi (AMF, Glomeromycotina) symbiotically colonize plant roots. AMF also possess their own microbiota, hosting some uncultivable endobacteria. Ongoing research has revealed the genetics underlying plant responses to colonization by AMF, but the fungal side of the relationship remains in the dark. Here, we sequenced the genome of Gigaspora margarita, a member of the Gigasporaceae in an early diverging group of the Glomeromycotina. In contrast to other AMF, G. margarita may host distinct endobacterial populations and possesses the largest fungal genome so far annotated (773.104 Mbp), with more than 64% transposable elements. Other unique traits of the G. margarita genome include the expansion of genes for inorganic phosphate metabolism, the presence of genes for production of secondary metabolites and a considerable number of potential horizontal gene transfer events. The sequencing of G. margarita genome reveals the importance of its immune system, shedding light on the evolutionary pathways that allowed early diverging fungi to interact with both plants and bacteria

    Heterogeneity of Early Host Response to Infection with Four Low-Pathogenic H7 Viruses with a Different Evolutionary History in the Field

    Get PDF
    Once low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes from wild birds enter into poultry species, there is the possibility of them mutating into highly pathogenic avian influenza viruses (HPAIVs), resulting in severe epizootics with up to 100% mortality. This mutation from a LPAIV to HPAIV strain is the main cause of an AIV's major economic impact on poultry production. Although AIVs are inextricably linked to their hosts in their evolutionary history, the contribution of host-related factors in the emergence of HPAI viruses has only been marginally explored so far. In this study, transcriptomic sequencing of tracheal tissue from chickens infected with four distinct LP H7 viruses, characterized by a different history of pathogenicity evolution in the field, was implemented. Despite the inoculation of a normalized infectious dose of viruses belonging to the same subtype (H7) and pathotype (LPAI), the use of animals of the same age, sex and species as well as the identification of a comparable viral load in the target samples, the analyses revealed a heterogeneity in the gene expression profile in response to infection with each of the H7 viruses administered

    Protective Efficacy of H9N2 Avian Influenza Vaccines Inactivated by Ionizing Radiation Methods Administered by the Parenteral or Mucosal Routes

    Get PDF
    H9N2 viruses have become, over the last 20 years, one of the most diffused poultry pathogens and have reached a level of endemicity in several countries. Attempts to control the spread and reduce the circulation of H9N2 have relied mainly on vaccination in endemic countries. However, the high level of adaptation to poultry, testified by low minimum infectious doses, replication to high titers, and high transmissibility, has severely hampered the results of vaccination campaigns. Commercially available vaccines have demonstrated high efficacy in protecting against clinical disease, but variable results have also been observed in reducing the level of replication and viral shedding in domestic poultry species. Antigenic drift and increased chances of zoonotic infections are the results of incomplete protection offered by the currently available vaccines, of which the vast majority are based on formalin-inactivated whole virus antigens. In our work, we evaluated experimental vaccines based on an H9N2 virus, inactivated by irradiation treatment, in reducing viral shedding upon different challenge doses and compared their efficacy with formalin-inactivated vaccines. Moreover, we evaluated mucosal delivery of inactivated antigens as an alternative route to subcutaneous and intramuscular vaccination. The results showed complete protection and prevention of replication in subcutaneously vaccinated Specific Pathogen Free White Leghorn chickens at low-to-intermediate challenge doses but a limited reduction of shedding at a high challenge dose. Mucosally vaccinated chickens showed a more variable response to experimental infection at all tested challenge doses and the main effect of vaccination attained the reduction of infected birds in the early phase of infection. Concerning mucosal vaccination, the irradiated vaccine was the only one affording complete protection from infection at the lowest challenge dose. Vaccine formulations based on H9N2 inactivated by irradiation demonstrated a potential for better performances than vaccines based on the formalin-inactivated antigen in terms of reduction of shedding and prevention of infection
    • 

    corecore