6 research outputs found

    The role of different strain backgrounds in bacterial endotoxin-mediated sensitization to neonatal hypoxic-ischemic brain damage

    Get PDF
    Genetic background is known to influence the outcome in mouse models of human disease, and previous experimental studies have shown strain variability in the neonatal mouse model of hypoxia-ischemia. To further map out this variability, we compared five commonly used mouse strains: C57BL/6, 129SVJ, BALB/c, CD1 and FVB in a pure hypoxic-ischemic setup and following pre-sensitization with lipopolysaccharide (LPS). Postnatal day 7 pups were subjected to unilateral carotid artery occlusion followed by continuous 30 min 8% oxygen exposure at 36 °C. Twelve hours prior, a third of the pups received a single intraperitoneal LPS (0.6 μg/g) or a saline (vehicle) administration, respectively; a further third underwent hypoxia-ischemia alone without preceding injection. Both C57BL/6 and 129SVJ strains showed minimal response to 30min hypoxia-ischemia alone, BALB/c demonstrated a moderate response, and both CD1 and FVB revealed the highest brain damage. LPS pre-sensitization led to substantial increase in overall brain infarction, microglial and astrocyte response and cell death in four of the five strains, with exception of BALB/c that only showed a significant effect with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Saline administration prior to hypoxia-ischemia resulted in an increase in inflammatory-associated markers, particularly in the astroglial activation of C57BL/6 mice, and in combined microglial activation and neuronal cell loss in FVB mice. Finally, two of the four strongly affected strains--C57BL/6 and CD1--revealed pronounced contralateral astrogliosis with a neuroanatomical localization similar to that observed on the occluded hemisphere. Overall, the current findings demonstrate strain differences in response to hypoxia-ischemia alone, to stress associated with vehicle injection, and to LPS-mediated pre-sensitization, which partially explains the high variability seen in the neonatal mouse models of hypoxia-ischemia. These results can be useful in future studies of fetal/neonatal response to inflammation and reduced oxygen-blood supply

    PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer

    Get PDF
    Triple-negative breast cancers (TNBCs) have poor prognosis and lack targeted therapies. Here we identified increased copy number and expression of the PIM1 proto-oncogene in genomic data sets of patients with TNBC. TNBC cells, but not nonmalignant mammary epithelial cells, were dependent on PIM1 for proliferation and protection from apoptosis. PIM1 knockdown reduced expression of the anti-apoptotic factor BCL2, and dynamic BH3 profiling of apoptotic priming revealed that PIM1 prevents mitochondrial-mediated apoptosis in TNBC cell lines. In TNBC tumors and their cellular models, PIM1 expression was associated with several transcriptional signatures involving the transcription factor MYC, and PIM1 depletion in TNBC cell lines decreased, in a MYC-dependent manner, cell population growth and expression of the MYC target gene MCL1. Treatment with the pan–PIM kinase inhibitor AZD1208 impaired the growth of both cell line and patient-derived xenografts and sensitized them to standard-of-care chemotherapy. This work identifies PIM1 as a malignant-cell-selective target in TNBC and the potential use of PIM1 inhibitors for sensitizing TNBC to chemotherapy-induced apoptotic cell death

    O-079 Regulation of Implantation by Interaction between the Type-1 IGF Receptor (IGF1R) and MiR-145

    No full text
    INTRODUCTION: Fetal heart rate variability (fHRV) is an indirect index of fetal wellbeing and autonomous nervous system (ANS) integrity. Fetal monitoring methods in labor are widely based on fHRV analysis but fail in early detection of hypoxia and acidemia. We explored the relation among two measures of ANS regulation, fHR Average Acceleration and Deceleration Capacities (AAC and ADC), computed by Phase-Rectified Signal Averaging (PRSA) method, and biomarkers of fetal acidemia, i.e. pH, Lactate (L) and Base Excess (BE). METHODS: In an in-vivo near-term fetal sheep model (n=9) repetitive umbilical cord occlusions (UCO) were applied for 1 min every 2.5 min as follows: mild partial UCO for 1 h; moderate partial UCO for 1h; and complete UCO x 1-2 h, until arterial pH<7.00. Arterial blood samples were collected at baseline, every 20 min during the UCO series, and at 1 h of recovery. Fetal ECG was recorded. AAC/ADC were computed for each phase of the protocol. Pearson correlation coefficient (r) was determined between AAC/ADC and biomarkers at T=3 (T determines the periodicities detected by PRSA). RESULTS: A significant correlation between AAC/ADC and biomarkers was found (0.45<|r|<0.8, p<0.05). The largest correlation was found between ADC and pH (r=-0.79; p<0.05). The table shows the r values between AAC/ADC and biomarkers. pH L BE ADC -0.79 * 0.55 * -0.72 * AAC 0.75 * -0.57 * 0.69 * Table 1: r between AAC/ADC and biomarkers (* p<0.05). CONCLUSIONS: This is the first in vivo evaluation of the correlation between AAC/ADC and acid-base status biomarkers computed by PRSA analysis of fHR. Our findings suggest that worsening acid-base status has an impact on AAC and ADC of fHR. This finding puts the grounds for future clinical studies

    Integrin-Mediated Macrophage Adhesion Promotes Lymphovascular Dissemination in Breast Cancer.

    Get PDF
    Lymphatic vasculature is crucial for metastasis in triple-negative breast cancer (TNBC); however, cellular and molecular drivers controlling lymphovascular metastasis are poorly understood. We define a macrophage-dependent signaling cascade that facilitates metastasis through lymphovascular remodeling. TNBC cells instigate mRNA changes in macrophages, resulting in β4 integrin-dependent adhesion to the lymphovasculature. β4 integrin retains macrophages proximal to lymphatic endothelial cells (LECs), where release of TGF-β1 drives LEC contraction via RhoA activation. Macrophages promote gross architectural changes to lymphovasculature by increasing dilation, hyperpermeability, and disorganization. TGF-β1 drives β4 integrin clustering at the macrophage plasma membrane, further promoting macrophage adhesion and demonstrating the dual functionality of TGF-β1 signaling in this context. β4 integrin-expressing macrophages were identified in human breast tumors, and a combination of vascular-remodeling macrophage gene signature and TGF-β signaling scores correlates with metastasis. We postulate that future clinical strategies for patients with TNBC should target crosstalk between β4 integrin and TGF-β1

    Anti-Folate Receptor alpha-directed Antibody Therapies Restrict the Growth of Triple Negative Breast Cancer

    Get PDF
    PURPOSE: Highly-aggressive triple negative breast cancers (TNBCs) lack validated therapeutic targets and have high risk of metastatic disease. Folate Receptor alpha (FRα) is a central mediator of cell growth regulation that could serve as an important target for cancer therapy. EXPERIMENTAL DESIGN: We evaluated FRα expression in breast cancers by genomic (N = 3414) and immunohistochemical (N = 323) analyses and its association with clinical parameters and outcomes. We measured the functional contributions of FRα in TNBC biology by RNA interference and the anti-tumor functions of an antibody recognizing FRα (MOv18-IgG1), in vitro and in human TNBC xenograft models. RESULTS: FRα is overexpressed in significant proportions of aggressive basal like/TNBC tumors, and in post-neoadjuvant chemotherapy-residual disease associated with a high risk of relapse. Expression is associated with worse overall survival. TNBCs show dysregulated expression of thymidylate synthase, folate hydrolase 1 and methylenetetrahydrofolate reductase, involved in folate metabolism. RNA interference to deplete FRα decreased Src and ERK signaling and resulted in reduction of cell growth. An anti-FRα antibody (MOv18-IgG1) conjugated with a Src inhibitor significantly restricted TNBC xenograft growth. Moreover, MOv18-IgG1 triggered immune-dependent cancer cell death in vitro by human volunteer and breast cancer patient immune cells, and significantly restricted orthotopic and patient-derived xenograft growth. CONCLUSIONS: FRα is overexpressed in high-grade TNBC and post-chemotherapy residual tumors. It participates in cancer cell signaling and presents a promising target for therapeutic strategies such as antibody-drug conjugates, or passive immunotherapy priming Fc-mediated anti-tumor immune cell responses
    corecore