117 research outputs found

    Draft Genome Sequence of Chromate-Resistant and Biofilm-Producing Strain Pseudomonas alcaliphila 34

    Get PDF
    We report the draft genome sequence of Pseudomonas alcaliphila 34, a Cr(VI)-hyperresistant and biofilm-producing bacterium that might be used for the bioremediation of chromate-polluted soils. The genome sequence might be helpful in exploring the mechanisms involved in chromium resistance and biofilm formation

    post seismic relaxation and earthquake triggering in the southern adriatic region

    Get PDF
    SUMMARY An attempt at quantifying post-seismic relaxation triggered by decoupling earthquakes along the eastern thrusting border of the Adriatic plate (southern Dinarides) is carried out by finite element modelling, with a model constituted by an elastic lithosphere riding on a viscous asthenosphere. In particular, it is investigated the possibility that the above phenomenon is responsible for the fact that in the last two centuries most major earthquakes in the southern Dinarides (MS > 6) have been followed, within a few years, by intense, mainly tensional, earthquakes in southern Italy, i.e. the zone lying on the opposite margin of the Adriatic plate. This analysis has been applied to the last example of the supposed seismic interrelation, i.e. the triggering 1979 April 15 Montenegro event (MS= 6.7) and the presumably induced 1980 November 23 Irpinia earthquake in the southern Apennines (MS= 6.9). Results indicate that the strain induced in the southern Apennines by the triggering event has significant amplitude, since it largely exceeds the effect of earth tides, and the principal stress axes are consistent with those of southern Apenninic earthquakes. The order of magnitude of the time delay between the Montenegro and Irpinia events (1.6 yr) could be explained by assuming that earthquake triggering is most probable when the highest values of the induced strain rate reach the southern Apennines. In particular, this interpretation predicts the observed time delay when a model diffusivity of 400 m2 s−1 is assumed. The constraints that this diffusivity value may pose on the structural and rheological features of the crust–upper-mantle system in the study area are discussed. It is shown that the effects of the Montenegro event on the present velocity field are comparable to, though systematically lower than, the velocities suggested by geodetic observations in the Italian region. This suggests that geodynamic interpretations of geodetic data given without taking into account possible transient effects on the kinematic pattern, as those related to post-seismic relaxation, may be incorrect. Experiments carried out by tentatively simulating the presence of subducted lithosphere along the western margin of the Adriatic plate as a lateral variation of diffusivity, have shown that this structural feature may emphasize E–W tensional strains in the southern Apennines

    Development of label-free biophysical markers in osteogenic maturation

    Get PDF
    The spatial and temporal changes of morphological and mechanical properties of living cells reflect complex functionally-associated processes. Monitoring these modifications could provide a direct information on the cellular functional state. Here we present an integrated biophysical approach to the quantification of the morphological and mechanical phenotype of single cells along a maturation pathway. Specifically, quantitative phase microscopy and single cell biomechanical testing were applied to the characterization of the maturation of human foetal osteoblasts, demonstrating the ability to identify effective label-free biomarkers along this fundamental biological process

    Genomic and phenotypic characterization of the species Acinetobacter venetianus

    Get PDF
    Crude oil is a complex mixture of hydrocarbons and other organic compounds that can produce serious environmental problems and whose removal is highly demanding in terms of human and technological resources. The potential use of microbes as bioremediation agents is one of the most promising fields in this area. Members of the species Acinetobacter venetianus have been previously characterized for their capability to degrade n-alkanes and thus may represent interesting model systems to implement this process. Although a preliminary experimental characterization of the overall hydrocarbon degradation capability has been performed for five of them, to date, the genetic/genomic features underlying such molecular processes have not been identified. Here we have integrated genomic and phenotypic information for six A. venetianus strains, i.e. VE-C3, RAG-1(T), LUH 13518, LUH 7437, LUH 5627 and LUH 8758. Besides providing a thorough description of the A. venetianus species, these data were exploited to infer the genetic features (presence/absence patterns of genes) and the short-term evolutionary events possibly responsible for the variability in n-alkane degradation efficiency of these strains, including the mechanisms of interaction with the fuel droplet and the subsequent catabolism of this pollutant

    Comparative expression pathway analysis of human and canine mammary tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spontaneous tumors in dog have been demonstrated to share many features with their human counterparts, including relevant molecular targets, histological appearance, genetics, biological behavior and response to conventional treatments. Mammary tumors in dog therefore provide an attractive alternative to more classical mouse models, such as transgenics or xenografts, where the tumour is artificially induced. To assess the extent to which dog tumors represent clinically significant human phenotypes, we performed the first genome-wide comparative analysis of transcriptional changes occurring in mammary tumors of the two species, with particular focus on the molecular pathways involved.</p> <p>Results</p> <p>We analyzed human and dog gene expression data derived from both tumor and normal mammary samples. By analyzing the expression levels of about ten thousand dog/human orthologous genes we observed a significant overlap of genes deregulated in the mammary tumor samples, as compared to their normal counterparts. Pathway analysis of gene expression data revealed a great degree of similarity in the perturbation of many cancer-related pathways, including the 'PI3K/AKT', 'KRAS', 'PTEN', 'WNT-beta catenin' and 'MAPK cascade'. Moreover, we show that the transcriptional relationships between different gene signatures observed in human breast cancer are largely maintained in the canine model, suggesting a close interspecies similarity in the network of cancer signalling circuitries.</p> <p>Conclusion</p> <p>Our data confirm and further strengthen the value of the canine mammary cancer model and open up new perspectives for the evaluation of novel cancer therapeutics and the development of prognostic and diagnostic biomarkers to be used in clinical studies.</p
    corecore