127 research outputs found
Ordinary primes for some varieties with extra endomorphisms
Let A be an abelian variety defined over a number field and of dimension g.
When g<3, by the recent work of Sawin, we know the exact (nonzero) value of the
density of the set of primes which are ordinary for A. In higher dimension very
little is known. We show that if g=3 and A has multiplication by an imaginary
quadratic field E, then there exists a nonzero density set of ordinary primes
for A. We reach the same conclusion if g=4 and the pair (A,E) has signature
(2,2). We also obtain partial results when g=3 and A has multiplication by a
totally real cubic field. We show that our methods also apply to certain
abelian varieties of Albert type IV of higher dimension. These results are
derived from an extended version of the l-adic methods of Katz, Ogus, and Serre
in the presence of extra endomorphisms.Comment: 13 page
Una predel·la per a la devoció a l'antic retaule major de la Seu Vella de Lleida
Aquest treball se centra en l'estudi de la segona predel·la que fou afegida
pels escultors Rotllà Gauler i Jordi Safont, entorn al 1440-1441, a l'antic retaule
major de la Seu Vella de Lleida, que havia estat executat per Bartomeu
de Robio i taller vers el 1360-1362. L'anà lisi s'aborda des del punt de
vista de les noves aportacions del segon gòtic internacional, lligades a la
Devotio Moderna, per la qual cosa s'ha mirat d'aprofundir en el programa
iconogrà fic sobre el cicle de la Passió que s'hi desenvolupà .This work focuses on the study of the second predella that was added by
the sculptors Rotllà Gaulter and Jordi Safont, around 1440-1441, to the old
altarpiece of the Seu Vella of Lleida, that was executed by Bartomeu de
Robio and his workshop towards 1360-1362. The analysis is done from
the point of view of the second International Gothic new contributions,
related to Devotio Moderna, so that we tried to deep into the iconographic
program on the cycle of the Passion that are developed
Sato-Tate distributions of twists of y^2=x^5-x and y^2=x^6+1
We determine the limiting distribution of the normalized Euler factors of an
abelian surface A defined over a number field k when A is isogenous to the
square of an elliptic curve defined over k with complex multiplication. As an
application, we prove the Sato-Tate Conjecture for Jacobians of Q-twists of the
curves y^2=x^5-x and y^2=x^6+1, which give rise to 18 of the 34 possibilities
for the Sato-Tate group of an abelian surface defined over Q. With twists of
these two curves one encounters, in fact, all of the 18 possibilities for the
Sato-Tate group of an abelian surface that is isogenous to the square of an
elliptic curve with complex multiplication. Key to these results is the
twisting Sato-Tate group of a curve, which we introduce in order to study the
effect of twisting on the Sato-Tate group of its Jacobian.Comment: minor edits, 42 page
El santuari de Santa Maria del Merli de la vila d'Alguaire: anà lisi artÃstic del temple del segle XIII
En este breve estudio, se ofrecen los pocos datos históricos sobre el santuario del Merli (Alguaire, Lleida) y la
análisis estilÃstico del edificio, datable en el último cuarto del siglo XIII, asà como las transformaciones y ampliación
que sufrió en época moderna, dentro del contexto de la arquitectura religiosa del área de Lleida
On the Hilbert eigenvariety at exotic and CM classical weight 1 points
Let be a totally real number field and let be a classical cuspidal
-regular Hilbert modular eigenform over of parallel weight . Let
be the point on the -adic Hilbert eigenvariety corresponding to
an ordinary -stabilization of . We show that if the -adic Schanuel
Conjecture is true, then is smooth at if has CM. If we
additionally assume that is Galois, we show that the weight map
is \'etale at if has either CM or exotic projective image (which is the
case for almost all cuspidal Hilbert modular eigenforms of parallel weight
). We prove these results by showing that the completed local ring of the
eigenvariety at is isomorphic to a universal nearly ordinary Galois
deformation ring.Comment: The material in the introduction and the final sections was
reorganized. The sections on background material were substantially shortene
On a local-global principle for quadratic twists of abelian varieties
Let and be abelian varieties defined over a number field of dimension . For , we show that the following local-global principle holds: and are quadratic twists of each other if and only if, for almost all primes of of good reduction for and , the reductions and are quadratic twists of each other. This result is known when , in which case it has appeared in works by Kings, Rajan, Ramakrishnan, and Serre. We provide an example that violates this local-global principle in dimension
Un primer apropament al santoral de la consueta RC. 0031 (Olim Roda 13) de l'Arxiu Capitular de Lleida del segle XV
Tal com s’indica al tÃtol, aquest estudi vol ser un primer apropament al santoral de la consueta
RC.0031 conservada a l’Arxiu Capitular de Lleida (ACL), procedent de Roda d’Isà vena. En ell,
primerament, fixem la cronologia definitiva del manuscrit entorn de les primeres dècades del
segle xv. Tot seguit, ens fixem en les seves caracterÃstiques, i aprofitem per oferir la transcripció
completa de les regulae. Passem després a analitzar el santoral, que comparem amb els d’altres
manuscrits de l’antiga catedral, en concret, amb el del calendari del breviari ilerdense del 1451
(ACL, LC.0016) i amb el del leccionari del segle xiv (ACL, RC.0026). Finalment, dediquem un
apartat al culte marià , especialment a la litúrgia estacional, i acabem donant notÃcia sobre els
drames litúrgics que se celebraven a la catedral lleidatan
- …