32 research outputs found

    Distinct Roles for ROCK1 and ROCK2 in the Regulation of Keratinocyte Differentiation

    Get PDF
    Background: The human epidermis is comprised of several layers of specialized epithelial cells called keratinocytes. Normal homoeostasis of the epidermis requires that the balance between keratinocyte proliferation and terminal differentiation be tightly regulated. The mammalian serine/threonine kinases (ROCK1 and ROCK2) are well-characterised downstream effectors of the small GTPase RhoA. We have previously demonstrated that the RhoA/ROCK signalling pathway plays an important role in regulation of human keratinocyte proliferation and terminal differentiation. In this paper we addressed the question of which ROCK isoform was involved in regulation of keratinocyte differentiation. Methodology and Principal Findings: We used RNAi to specifically knockdown ROCK1 or ROCK2 expression in cultured human keratinocytes. ROCK1 depletion results in decreased keratinocyte adhesion to fibronectin and an increase in terminal differentiation. Conversely, ROCK2 depletion results in increased keratinocyte adhesion to fibronectin and inhibits terminal differentiation. Conclusion: These data suggest that ROCK1 and ROCK2 play distinct roles in regulating keratinocyte adhesion and terminal differentiation

    Developing an intervention to facilitate family communication about inherited genetic conditions, and training genetic counsellors in its delivery.

    Get PDF
    Many families experience difficulty in talking about an inherited genetic condition that affects one or more of them. There have now been a number of studies identifying the issues in detail, however few have developed interventions to assist families. The SPRinG collaborative have used the UK Medical Research Council's guidance on Developing and Evaluating Complex Interventions, to work with families and genetic counsellors (GCs) to co-design a psycho-educational intervention to facilitate family communication and promote better coping and adaptation to living with an inherited genetic condition for parents and their children (<18 years). The intervention is modelled on multi-family discussion groups (MFDGs) used in psychiatric settings. The MFDG was developed and tested over three phases. First focus groups with parents, young people, children and health professionals discussed whether MFDG was acceptable and proposed a suitable design. Using evidence and focus group data, the intervention and a training manual were developed and three GCs were trained in its delivery. Finally, a prototype MFDG was led by a family therapist and co-facilitated by the three GCs. Data analysis showed that families attending the focus groups and intervention thought MFDG highly beneficial, and the pilot sessions had a significant impact on their family' functioning. We also demonstrated that it is possible to train GCs to deliver the MFDG intervention. Further studies are now required to test the feasibility of undertaking a definitive randomised controlled trial to evaluate its effectiveness in improving family outcomes before implementing into genetic counselling practice.The National Institute of Health Research funded the study but any views expressed do not necessarily reflect those of the Authority. Funded by NIHR reference number: RP-DG-1211-10015

    Differential Regulation of Adhesion Complex Turnover by ROCK1 and ROCK2

    Get PDF
    ROCK1 and ROCK2 are serine/threonine kinases that function downstream of the small GTP-binding protein RhoA. Rho signalling via ROCK regulates a number of cellular functions including organisation of the actin cytoskeleton, cell adhesion and cell migration.In this study we use RNAi to specifically knockdown ROCK1 and ROCK2 and analyse their role in assembly of adhesion complexes in human epidermal keratinocytes. We observe that loss of ROCK1 inhibits signalling via focal adhesion kinase resulting in a failure of immature adhesion complexes to form mature stable focal adhesions. In contrast, loss of ROCK2 expression results in a significant reduction in adhesion complex turnover leading to formation of large, stable focal adhesions. Interestingly, loss of either ROCK1 or ROCK2 expression significantly impairs cell migration indicating both ROCK isoforms are required for normal keratinocyte migration.ROCK1 and ROCK2 have distinct and separate roles in adhesion complex assembly and turnover in human epidermal keratinocytes

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Plakoglobin-dependent regulation of keratinocyte apoptosis by Rnd3

    No full text
    The human epidermis is a self-renewing, stratified epithelial tissue that provides the protective function of the skin. The principal cell type within the epidermis is the keratinocyte and normal function of the epidermis requires that keratinocyte proliferation, differentiation and cell death be carefully controlled. There is clear evidence that signalling through adhesion receptors such as integrins and cadherins plays a key role in regulating epidermal function. Previous work has shown that Rho family GTPases regulate cadherin- and integrin-based adhesion structures and hence epidermal function. In this study we show that a member of this family - Rnd3 - regulates desmosomal cell-cell adhesion in that loss of Rnd3 expression leads to an increase in desmosomes at sites of cell-cell adhesion and altered colony morphology. Loss of Rnd3 expression is also associated with resistance to cisplatin-mediated apoptosis in keratinocytes and this resistance is mediated via the desmosomal protein plakoglobin. We propose a novel plakoglobin-dependent role for Rnd3 in the regulation of keratinocyte cell death.</jats:p

    The RASSF8 candidate tumor suppressor inhibits cell growth and regulates the Wnt and NF-ÎșB signaling pathways

    Get PDF
    The Ras-assocation domain family (RASSF) of tumor suppressor proteins until recently contained six proteins named RASSF1–6. Recently, four novel family members, RASSF7–10, have been identified by homology searches for RA-domain-containing proteins. These additional RASSF members are divergent and structurally distinct from RASSF1–6, containing an N-terminal RA domain and lacking the Sav/RASSF/Hpo (SARAH) domain. Here, we show that RASSF8 is ubiquitously expressed throughout the murine embryo and in normal human adult tissues. Functionally, RNAi-mediated knockdown of RASSF8 in non-small-cell lung cancer (NSCLC) cell lines, increased anchorage-independent growth in soft agar and enhanced tumor growth in severe combined immunodeficiency (SCID) mice. Furthermore, EdU staining of RASSF8-depleted cells showed growth suppression in a manner dependent on contact inhibition. We show that endogenous RASSF8 is not only found in the nucleus, but is also membrane associated at sites of cell–cell adhesion, co-localizing with the adherens junction (AJ) component ÎČ- catenin and binding to E-cadherin. Following RASSF8 depletion in two different lung cancer cell lines using alternative small interfering RNA (siRNA) sequences, we show that AJs are destabilized and Ecadherin is lost from the cell membrane. The AJ components ÎČ-catenin and p65 are also lost from sites of cell–cell contact and are relocalized to the nucleus with a concomitant increase in ÎČ-catenindependent and nuclear factor-ÎșB (NF-ÎșB)-dependent signaling following RASSF8 depletion. RASSF8 may also be required to maintain actin -cytoskeletal organization since immunofluorescence analysis shows a striking disorganization of the actin- cytoskeleton following RASSF8 depletion. Accordingly, scratch wound healing studies show increased cellular migration in RASSF8-deficient cells. These results implicate RASSF8 as a tumor suppressor gene that is essential for maintaining AJs function in epithelial cells and have a role in epithelial cell migration.Cancer Research UKBreast Cancer CampaignSport Aiding Medical Research for Kids (SPARKS
    corecore