1,639 research outputs found
Towards the model driven organization
Todays modern organization is faced with a need for rapid response to changes from external business pressures by updating systems and operational procedures. The effect of such continuous evolution eventually leads to sub- optimal configurations of its underlying systems. The management of continuous business change is compromised by uncertainty due to the inadequacy of existing mechanisms for responding to multiple change drivers thus leading to signifi- cant organizational costs. This represents a major opportunity for seeking greater efficiencies. To date, there has been little or no attempt to apply model driven principles or approaches to addressing these issues. We present a new vision of a Model Driven Organisation (MDO) that has the potential to increase produc- tivity by promoting integration of business processes and collaborations across the organisation whilst supporting safe and convenient adaptations that enable rapid response to change whilst maintaining integrity of the systems within the organisation. The approach proposed is based on the use of modelling languages and simulation technologies that support abstractions for understanding business goals through to specification of IT systems and ultimately to deployed systems. The paper motivates the problem and proposes a definition of the MDO. We val- idate the proposal through an illustrative case and conclude with a review of the state of the art leading to a roadmap of research and emergent grand challenges towards achieving the MDO vision
Recommended from our members
iPad use in fieldwork: formal and informal use to enhance pedagogical practice in a bring your own technology world
We report on use of iPads (and other IOS devices) for student fieldwork use and as electronic field notebooks and to promote active. We have used questionnaires and interviews of tutors and students to elicit their views and technology and iPad use for fieldwork. There is some reluctance for academic staff to relinquish paper notebooks for iPad use, whether in the classroom or on fieldwork, as well as use them for observational and measurement purposes. Students too are largely unaware of the potential of iPads for enhancing fieldwork. Apps can be configured for a wide variety of specific uses that make iPads useful for educational as well as social uses. Such abilities should be used to enhance existing practice as well as make new functionality. For example, for disabled students who find it difficult to use conventional note taking. iPads can be used to develop student self-directed learning and for group contributions. The technology becomes part of the studentsâ personal learning environments as well as at the heart of their knowledge spaces â academic and social. This blurring of boundaries is due to iPadsâ usability to cultivate field use, instruction, assessment and feedback processes. iPads can become field microscopes and entries to citizen science and we see the iPad as the main âcomputingâ device for students in the near future. As part of the Bring Your Own Technology/Device (BYOD) the iPad has much to offer although, both staff and students need to be guided in the most effective use for self-directed education via development of Personal Learning Environments. A more student-oriented pedagogy is suggested to correspond to the increasing use of tablet technologies by student
Life Beyond the Solar System: Space Weather and Its Impact on Habitable Worlds
The search of life in the Universe is a fundamental problem of astrobiology
and a major priority for NASA. A key area of major progress since the NASA
Astrobiology Strategy 2015 (NAS15) has been a shift from the exoplanet
discovery phase to a phase of characterization and modeling of the physics and
chemistry of exoplanetary atmospheres, and the development of observational
strategies for the search for life in the Universe by combining expertise from
four NASA science disciplines including heliophysics, astrophysics, planetary
science and Earth science. The NASA Nexus for Exoplanetary System Science
(NExSS) has provided an efficient environment for such interdisciplinary
studies. Solar flares, coronal mass ejections and solar energetic particles
produce disturbances in interplanetary space collectively referred to as space
weather, which interacts with the Earth upper atmosphere and causes dramatic
impact on space and ground-based technological systems. Exoplanets within close
in habitable zones around M dwarfs and other active stars are exposed to
extreme ionizing radiation fluxes, thus making exoplanetary space weather (ESW)
effects a crucial factor of habitability. In this paper, we describe the recent
developments and provide recommendations in this interdisciplinary effort with
the focus on the impacts of ESW on habitability, and the prospects for future
progress in searching for signs of life in the Universe as the outcome of the
NExSS workshop held in Nov 29 - Dec 2, 2016, New Orleans, LA. This is one of
five Life Beyond the Solar System white papers submitted by NExSS to the
National Academy of Sciences in support of the Astrobiology Science Strategy
for the Search for Life in the Universe.Comment: 5 pages, the white paper was submitted to the National Academy of
Sciences in support of the Astrobiology Science Strategy for the Search for
Life in the Univers
Beta-decay branching ratios of 62Ga
Beta-decay branching ratios of 62Ga have been measured at the IGISOL facility
of the Accelerator Laboratory of the University of Jyvaskyla. 62Ga is one of
the heavier Tz = 0, 0+ -> 0+ beta-emitting nuclides used to determine the
vector coupling constant of the weak interaction and the Vud quark-mixing
matrix element. For part of the experimental studies presented here, the
JYFLTRAP facility has been employed to prepare isotopically pure beams of 62Ga.
The branching ratio obtained, BR= 99.893(24)%, for the super-allowed branch is
in agreement with previous measurements and allows to determine the ft value
and the universal Ft value for the super-allowed beta decay of 62Ga
Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations
We use the zero-temperature random-field Ising model to study hysteretic
behavior at first-order phase transitions. Sweeping the external field through
zero, the model exhibits hysteresis, the return-point memory effect, and
avalanche fluctuations. There is a critical value of disorder at which a jump
in the magnetization (corresponding to an infinite avalanche) first occurs. We
study the universal behavior at this critical point using mean-field theory,
and also present preliminary results of numerical simulations in three
dimensions.Comment: 12 pages plus 2 appended figures, plain TeX, CU-MSC-747
Suppressed Far-UV stellar activity and low planetary mass-loss in the WASP-18 system
WASP-18 hosts a massive, very close-in Jupiter-like planet. Despite its young age (RâČHK activity parameter lies slightly below the basal level; there is no significant time-variability in the log RâČHK value; there is no detection of the star in the X-rays. We present results of far-UV observations of WASP-18 obtained with COS on board of HST aimed at explaining this anomaly. From the starâs spectral energy distribution, we infer the extinction (E(B â V) â 0.01mag) and then the ISM column density for a number of ions, concluding that ISM absorption is not the origin of the anomaly. We measure the flux of the four stellar emission features detected in the COS spectrum (C II, C III, C IV, Si IV). Comparing the C II/C IV flux ratio measured for WASP-18 with that derived from spectra of nearby stars with known age, we see that the far-UV spectrum of WASP-18 resembles that of old (>5Gyr), inactive stars, in stark contrast with its young age. We conclude that WASP-18 has an intrinsically low activity level, possibly caused by star-planet tidal interaction, as suggested by previous studies. Re-scaling the solar irradiance reference spectrum to match the flux of the Si IV line, yields an XUV integrated flux at the planet orbit of 10.2 erg sâ1 cmâ2. We employ the rescaled XUV solar fluxes to model of the planetary upper atmosphere, deriving an extremely low thermal mass-loss rate of 10â20MJ Gyrâ1. For such high-mass planets, thermal escape is not energy limited, but driven by Jeans escape
- âŠ