34 research outputs found

    Identification and characterization of pseudogenes in the rice gene complement

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Osa1 Genome Annotation of rice (<it>Oryza sativa </it>L. ssp. <it>japonica </it>cv. Nipponbare) is the product of a semi-automated pipeline that does not explicitly predict pseudogenes. As such, it is likely to mis-annotate pseudogenes as functional genes. A total of 22,033 gene models within the Osa1 Release 5 were investigated as potential pseudogenes as these genes exhibit at least one feature potentially indicative of pseudogenes: lack of transcript support, short coding region, long untranslated region, or, for genes residing within a segmentally duplicated region, lack of a paralog or significantly shorter corresponding paralog.</p> <p>Results</p> <p>A total of 1,439 pseudogenes, identified among genes with pseudogene features, were characterized by similarity to fully-supported gene models and the presence of frameshifts or premature translational stop codons. Significant difference in the length of duplicated genes within segmentally-duplicated regions was the optimal indicator of pseudogenization. Among the 816 pseudogenes for which a probable origin could be determined, 75% originated from gene duplication events while 25% were the result of retrotransposition events. A total of 12% of the pseudogenes were expressed. Finally, F-box proteins, BTB/POZ proteins, terpene synthases, chalcone synthases and cytochrome P450 protein families were found to harbor large numbers of pseudogenes.</p> <p>Conclusion</p> <p>These pseudogenes still have a detectable open reading frame and are thus distinct from pseudogenes detected within intergenic regions which typically lack definable open reading frames. Families containing the highest number of pseudogenes are fast-evolving families involved in ubiquitination and secondary metabolism.</p

    The TIGR Rice Genome Annotation Resource: improvements and new features

    Get PDF
    In The Institute for Genomic Research Rice Genome Annotation project (), we have continued to update the rice genome sequence with new data and improve the quality of the annotation. In our current release of annotation (Release 4.0; January 12, 2006), we have identified 42 653 non-transposable element-related genes encoding 49 472 gene models as a result of the detection of alternative splicing. We have refined our identification methods for transposable element-related genes resulting in 13 237 genes that are related to transposable elements. Through incorporation of multiple transcript and proteomic expression data sets, we have been able to annotate 24 799 genes (31 739 gene models), representing ∼50% of the total gene models, as expressed in the rice genome. All structural and functional annotation is viewable through our Rice Genome Browser which currently supports 59 tracks. Enhanced data access is available through web interfaces, FTP downloads and a Data Extractor tool developed in order to support discrete dataset downloads

    Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation

    Get PDF
    BACKGROUND: The 50-year-old Aedes albopictus C6/36 cell line is a resource for the detection, amplification, and analysis of mosquito-borne viruses including Zika, dengue, and chikungunya. The cell line is derived from an unknown number of larvae from an unspecified strain of Aedes albopictus mosquitoes. Toward improved utility of the cell line for research in virus transmission, we present an annotated assembly of the C6/36 genome. RESULTS: The C6/36 genome assembly has the largest contig N50 (3.3 Mbp) of any mosquito assembly, presents the sequences of both haplotypes for most of the diploid genome, reveals independent null mutations in both alleles of the Dicer locus, and indicates a male-specific genome. Gene annotation was computed with publicly available mosquito transcript sequences. Gene expression data from cell line RNA sequence identified enrichment of growth-related pathways and conspicuous deficiency in aquaporins and inward rectifier K+ channels. As a test of utility, RNA sequence data from Zika-infected cells were mapped to the C6/36 genome and transcriptome assemblies. Host subtraction reduced the data set by 89%, enabling faster characterization of nonhost reads. CONCLUSIONS: The C6/36 genome sequence and annotation should enable additional uses of the cell line to study arbovirus vector interactions and interventions aimed at restricting the spread of human disease

    A high-quality bonobo genome refines the analysis of hominid evolution

    Get PDF
    The divergence of chimpanzee and bonobo provides one of the few examples of recent hominid speciation1,2. Here we describe a fully annotated, high-quality bonobo genome assembly, which was constructed without guidance from reference genomes by applying a multiplatform genomics approach. We generate a bonobo genome assembly in which more than 98% of genes are completely annotated and 99% of the gaps are closed, including the resolution of about half of the segmental duplications and almost all of the full-length mobile elements. We compare the bonobo genome to those of other great apes1,3,4,5 and identify more than 5,569 fixed structural variants that specifically distinguish the bonobo and chimpanzee lineages. We focus on genes that have been lost, changed in structure or expanded in the last few million years of bonobo evolution. We produce a high-resolution map of incomplete lineage sorting and estimate that around 5.1% of the human genome is genetically closer to chimpanzee or bonobo and that more than 36.5% of the genome shows incomplete lineage sorting if we consider a deeper phylogeny including gorilla and orangutan. We also show that 26% of the segments of incomplete lineage sorting between human and chimpanzee or human and bonobo are non-randomly distributed and that genes within these clustered segments show significant excess of amino acid replacement compared to the rest of the genome

    Population genomics of the critically endangered kākāpō

    Get PDF
    Summary The kākāpō is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kākāpō, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes from the extinct mainland population. While theory suggests that such a small population is likely to have accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small population size in kākāpō indicate that present-day island kākāpō have a reduced number of harmful mutations compared to mainland individuals. We hypothesize that this reduced mutational load is due to the island population having been subjected to a combination of genetic drift and purging of deleterious mutations, through increased inbreeding and purifying selection, since its isolation from the mainland ∼10,000 years ago. Our results provide evidence that small populations can survive even when isolated for hundreds of generations. This work provides key insights into kākāpō breeding and recovery and more generally into the application of genetic tools in conservation efforts for endangered species

    Standards recommendations for the Earth BioGenome Project

    Get PDF
    A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met

    EuCAP, a Eukaryotic Community Annotation Package, and its application to the rice genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the improvements of tools for automated annotation of genome sequences, manual curation at the structural and functional level can provide an increased level of refinement to genome annotation. The Institute for Genomic Research Rice Genome Annotation (hereafter named the Osa1 Genome Annotation) is the product of an automated pipeline and, for this reason, will benefit from the input of biologists with expertise in rice and/or particular gene families. Leveraging knowledge from a dispersed community of scientists is a demonstrated way of improving a genome annotation. This requires tools that facilitate 1) the submission of gene annotation to an annotation project, 2) the review of the submitted models by project annotators, and 3) the incorporation of the submitted models in the ongoing annotation effort.</p> <p>Results</p> <p>We have developed the Eukaryotic Community Annotation Package (EuCAP), an annotation tool, and have applied it to the rice genome. The primary level of curation by community annotators (CA) has been the annotation of gene families. Annotation can be submitted by email or through the EuCAP Web Tool. The CA models are aligned to the rice pseudomolecules and the coordinates of these alignments, along with functional annotation, are stored in the MySQL EuCAP Gene Model database. Web pages displaying the alignments of the CA models to the Osa1 Genome models are automatically generated from the EuCAP Gene Model database. The alignments are reviewed by the project annotators (PAs) in the context of experimental evidence. Upon approval by the PAs, the CA models, along with the corresponding functional annotations, are integrated into the Osa1 Genome Annotation. The CA annotations, grouped by family, are displayed on the Community Annotation pages of the project website <url>http://rice.tigr.org</url>, as well as in the Community Annotation track of the Genome Browser.</p> <p>Conclusion</p> <p>We have applied EuCAP to rice. As of July 2007, the structural and/or functional annotation of 1,094 genes representing 57 families have been deposited and integrated into the current gene set. All of the EuCAP components are open-source, thereby allowing the implementation of EuCAP for the annotation of other genomes. EuCAP is available at <url>http://sourceforge.net/projects/eucap/</url>.</p

    Evolutionary and Expression Signatures of Pseudogenes in Arabidopsis and Rice1[C][W][OA]

    No full text
    Pseudogenes (Ψ) are nonfunctional genomic sequences resembling functional genes. Knowledge of Ψs can improve genome annotation and our understanding of genome evolution. However, there has been relatively little systemic study of Ψs in plants. In this study, we characterized the evolution and expression patterns of Ψs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). In contrast to animal Ψs, many plant Ψs experienced much stronger purifying selection. In addition, plant Ψs experiencing stronger selective constraints tend to be derived from relatively ancient duplicates, suggesting that they were functional for a relatively long time but became Ψs recently. Interestingly, the regions 5′ to the first stops in the Ψs have experienced stronger selective constraints compared with 3′ regions, suggesting that the 5′ regions were functional for a longer period of time after the premature stops appeared. We found that few Ψs have expression evidence, and their expression levels tend to be lower compared with annotated genes. Furthermore, Ψs with expressed sequence tags tend to be derived from relatively recent duplication events, indicating that Ψ expression may be due to insufficient time for complete degeneration of regulatory signals. Finally, larger protein domain families have significantly more Ψs in general. However, while families involved in environmental stress responses have a significant excess of Ψs, transcription factors and receptor-like kinases have lower than expected numbers of Ψs, consistent with their elevated retention rate in plant genomes. Our findings illustrate peculiar properties of plant Ψs, providing additional insight into the evolution of duplicate genes and benefiting future genome annotation
    corecore