4,598 research outputs found

    ATLsc with partial observation

    Full text link
    Alternating-time temporal logic with strategy contexts (ATLsc) is a powerful formalism for expressing properties of multi-agent systems: it extends CTL with strategy quantifiers, offering a convenient way of expressing both collaboration and antagonism between several agents. Incomplete observation of the state space is a desirable feature in such a framework, but it quickly leads to undecidable verification problems. In this paper, we prove that uniform incomplete observation (where all players have the same observation) preserves decidability of the model-checking problem, even for very expressive logics such as ATLsc.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Dimensional contraction via Markov transportation distance

    Get PDF
    It is now well known that curvature conditions \`a la Bakry-Emery are equivalent to contraction properties of the heat semigroup with respect to the classical quadratic Wasserstein distance. However, this curvature condition may include a dimensional correction which up to now had not induced any strenghtening of this contraction. We first consider the simplest example of the Euclidean heat semigroup, and prove that indeed it is so. To consider the case of a general Markov semigroup, we introduce a new distance between probability measures, based on the semigroup, and adapted to it. We prove that this Markov transportation distance satisfies the same properties for a general Markov semigroup as the Wasserstein distance does in the specific case of the Euclidean heat semigroup, namely dimensional contraction properties and Evolutional variational inequalities

    Annotation of Tribolium nuclear receptors reveals an evolutionary overacceleration of a network controlling the ecdysone cascade

    Get PDF
    The Tribolium genome contains 21 nuclear receptors, representing all of the six known subfamilies. When compared to other species, this first complete set for a Coleoptera reveals a strong conservation of the number and identity of nuclear receptors in holometabolous insects. Two novelties are observed: the atypical NR0 gene knirps is present only in brachyceran flies, while the NR2E6 gene is found only in Tribolium and in Apis. Using a quantitative analysis of the evolutionary rate, we discovered that nuclear receptors could be divided into two groups. In one group of 13 proteins, the rates follow the trend of the Mecopterida genome-wide acceleration. In a second group of five nuclear receptors, all acting together at the top of the ecdysone cascade, we observed an overacceleration of the evolutionary rate during the early divergence of Mecopterida. We thus extended our analysis to the twelve classic ecdysone transcriptional regulators and found that six of them (ECR, USP, HR3, E75, HR4 and Kr-h1) underwent an overacceleration at the base of the Mecopterida lineage. By contrast, E74, E93, BR, HR39, FTZ-F1 and E78 do not show this divergence. We suggest that coevolution occurred within a network of regulators that control the ecdysone cascade. The advent of Tribolium as a powerful model should allow a better understanding of this evolution

    Non ultracontractive heat kernel bounds by Lyapunov conditions

    Get PDF
    Nash and Sobolev inequalities are known to be equivalent to ultracontractive properties of heat-like Markov semigroups, hence to uniform on-diagonal bounds on their kernel densities. In non ultracontractive settings, such bounds can not hold, and (necessarily weaker, non uniform) bounds on the semigroups can be derived by means of weighted Nash (or super-Poincar\'e) inequalities. The purpose of this note is to show how to check these weighted Nash inequalities in concrete examples, in a very simple and general manner. We also deduce off-diagonal bounds for the Markov kernels of the semigroups, refining E. B. Davies' original argument

    On the Linear Extension Complexity of Regular n-gons

    Full text link
    In this paper, we propose new lower and upper bounds on the linear extension complexity of regular nn-gons. Our bounds are based on the equivalence between the computation of (i) an extended formulation of size rr of a polytope PP, and (ii) a rank-rr nonnegative factorization of a slack matrix of the polytope PP. The lower bound is based on an improved bound for the rectangle covering number (also known as the boolean rank) of the slack matrix of the nn-gons. The upper bound is a slight improvement of the result of Fiorini, Rothvoss and Tiwary [Extended Formulations for Polygons, Discrete Comput. Geom. 48(3), pp. 658-668, 2012]. The difference with their result is twofold: (i) our proof uses a purely algebraic argument while Fiorini et al. used a geometric argument, and (ii) we improve the base case allowing us to reduce their upper bound 2log2(n)2 \left\lceil \log_2(n) \right\rceil by one when 2k1<n2k1+2k22^{k-1} < n \leq 2^{k-1}+2^{k-2} for some integer kk. We conjecture that this new upper bound is tight, which is suggested by numerical experiments for small nn. Moreover, this improved upper bound allows us to close the gap with the best known lower bound for certain regular nn-gons (namely, 9n139 \leq n \leq 13 and 21n2421 \leq n \leq 24) hence allowing for the first time to determine their extension complexity.Comment: 20 pages, 3 figures. New contribution: improved lower bound for the boolean rank of the slack matrices of n-gon

    Algorithms for Positive Semidefinite Factorization

    Full text link
    This paper considers the problem of positive semidefinite factorization (PSD factorization), a generalization of exact nonnegative matrix factorization. Given an mm-by-nn nonnegative matrix XX and an integer kk, the PSD factorization problem consists in finding, if possible, symmetric kk-by-kk positive semidefinite matrices {A1,...,Am}\{A^1,...,A^m\} and {B1,...,Bn}\{B^1,...,B^n\} such that Xi,j=trace(AiBj)X_{i,j}=\text{trace}(A^iB^j) for i=1,...,mi=1,...,m, and j=1,...nj=1,...n. PSD factorization is NP-hard. In this work, we introduce several local optimization schemes to tackle this problem: a fast projected gradient method and two algorithms based on the coordinate descent framework. The main application of PSD factorization is the computation of semidefinite extensions, that is, the representations of polyhedrons as projections of spectrahedra, for which the matrix to be factorized is the slack matrix of the polyhedron. We compare the performance of our algorithms on this class of problems. In particular, we compute the PSD extensions of size k=1+log2(n)k=1+ \lceil \log_2(n) \rceil for the regular nn-gons when n=5n=5, 88 and 1010. We also show how to generalize our algorithms to compute the square root rank (which is the size of the factors in a PSD factorization where all factor matrices AiA^i and BjB^j have rank one) and completely PSD factorizations (which is the special case where the input matrix is symmetric and equality Ai=BiA^i=B^i is required for all ii).Comment: 21 pages, 3 figures, 3 table

    Sparsity-Promoting Bayesian Dynamic Linear Models

    Get PDF
    Sparsity-promoting priors have become increasingly popular over recent years due to an increased number of regression and classification applications involving a large number of predictors. In time series applications where observations are collected over time, it is often unrealistic to assume that the underlying sparsity pattern is fixed. We propose here an original class of flexible Bayesian linear models for dynamic sparsity modelling. The proposed class of models expands upon the existing Bayesian literature on sparse regression using generalized multivariate hyperbolic distributions. The properties of the models are explored through both analytic results and simulation studies. We demonstrate the model on a financial application where it is shown that it accurately represents the patterns seen in the analysis of stock and derivative data, and is able to detect major events by filtering an artificial portfolio of assets

    Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS

    Get PDF
    This article presents a finite element reduced order model for the nonlinear vibrations of piezoelectric layered beams with application to NEMS. In this model, the geometrical nonlinearities are taken into account through a von Kármán nonlinear strain–displacement relationship. The originality of the finite element electromechanical formulation is that the system electrical state is fully described by only a couple of variables per piezoelectric patches, namely the electric charge contained in the electrodes and the voltage between the electrodes. Due to the geometrical nonlinearity, the piezoelectric actuation introduces an original parametric excitation term in the equilibrium equation. The reduced-order formulation of the discretized problem is obtained by expanding the mechanical displacement unknown vector onto the short-circuit eigenmode basis. A particular attention is paid to the computation of the unknown nonlinear stiffness coefficients of the reduced-order model. Due to the particular form of the von Kármán nonlinearities, these coefficients are computed exactly, once for a given geometry, by prescribing relevant nodal displacements in nonlinear static solutions settings. Finally, the low-order model is computed with an original purely harmonic-based continuation method. Our numerical tool is then validated by computing the nonlinear vibrations of a mechanically excited homogeneous beam supported at both ends referenced in the literature. The more difficult case of the nonlinear oscillations of a layered nanobridge piezoelectrically actuated is also studied. Interesting vibratory phenomena such as parametric amplification or patch length dependence of the frequency output response are highlighted in order to help in the design of these nanodevices.This research is part of the NEMSPIEZO project, under funds from the French National Research Agency (Project ANR-08-NAN O-015-04), for which the authors are grateful
    corecore