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Abstract 

 

The Tribolium genome contains 21 nuclear receptors, representing all of the six known 

subfamilies. When compared to other species, this first complete set for a Coleoptera reveals a 

strong conservation of the number and identity of nuclear receptors in holometabolous 

insects. Two novelties are observed: the atypical NR0 gene knirps is present only in 

brachyceran flies, while the NR2E6 gene is found only in Tribolium and in Apis. Using a 

quantitative analysis of the evolutionary rate, we discovered that nuclear receptors could be 

divided into two groups. In one group of 13 proteins, the rates follow the trend of the 

Mecopterida genome-wide acceleration. In a second group of five nuclear receptors, all acting 

together at the top of the ecdysone cascade, we observed an overacceleration of the 

evolutionary rate during the early divergence of Mecopterida. We thus extended our analysis 

to the twelve classic ecdysone transcriptional regulators and found that six of them (ECR, 

USP, HR3, E75, HR4 and Kr-h1) underwent an overacceleration at the base of the 

Mecopterida lineage. By contrast, E74, E93, BR, HR39, FTZ-F1 and E78 do not show this 

divergence. We suggest that coevolution occurred within a network of regulators that control 

the ecdysone cascade. The advent of Tribolium as a powerful model should allow a better 

understanding of this evolution. 
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1. Introduction 

The recent burst of hexapod’s genome projects has already provided two novel and 

major results concerning the evolution of holometabolous insects (Savard et al., 2006a; 

Savard et al., 2006b; Zdobnov and Bork, 2007). First, contrary to the most widely accepted 

hypothesis, Hymenoptera are basal to the other main holometabolous orders, Coleoptera, 

Diptera and Lepidoptera. Previous phylogenies, obtained with morphological and molecular 

markers (rRNA, mitochondrial DNA), were favouring a sister-group relationship between 

Hymenoptera and Mecopterida (Diptera+Lepidoptera), with Coleoptera as the basal group 

(Kristensen, 1999; Whitting, 2002). The new tree is fully resolved for these four large orders 

(>85% of hexapods species), although it lacks genomic data for seven smaller 

holometabolous orders. In that perspective, sequencing efforts for the Neuropterida 

superorder and for the enigmatic Strepsiptera would be highly valuable. The second important 

result is an acceleration of protein evolution in Mecopterida. Such an episodic change of rate 

had already been characterized for some genes in Diptera (Friedrich and Tautz, 1997), but the 

recent results show that this acceleration affected the whole genome of both Diptera and 

Lepidoptera (Savard et al., 2006b; Zdobnov and Bork, 2007). Therefore, we can assume that 

an important evolutionary transition established a clear separation within holometabolous 

insects, between the monophyletic superorder Mecopterida and the non-Mecopterida species. 

This is very intriguing, because this molecular divergence is not obviously correlated with any 

major phenotypic change. The only morphological synapomorphies for Mecopterida are, for 

example, presence/absence of some specific muscles in adults or larvae (Kristensen, 1981; 

Whiting, 1998). A question is thus raised: what were the consequences of this acceleration for 

the developmental gene regulatory networks? Given the numerous interactions existing 

between proteins that control development, it is currently unclear how important functions 

can be maintained when their determining genetic elements are changing. Solving this issue 
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requests to identify which part of a given network can change and how the different partners 

can coevolve. In view of the renewed landscape of holometabolous insect’s phylogenomics, 

the Mecopterida acceleration appears as a case study to tackle these questions of the 

robustness and the adaptability of developmental regulatory networks during lineage specific 

events. 

 

The regulatory networks that control the development of insects are largely composed 

of transcription factors and signalling proteins. Remarkably, one family of transcription 

factors, the nuclear receptors, can bypass the relatively slow and complex intracellular 

signalisation pathways. The transcriptional activity of these proteins usually depends on the 

binding of specific ligands to their ligand-binding domain. In animals, nuclear receptors are 

the only transcription factors (with the aryl hydrocarbon receptors) that are directly activated 

by small lipophilic ligands (hormones, fatty acids, gas) capable of going through the cell 

membrane. Nuclear receptors provide the organism with essential tools to respond rapidly, at 

the gene expression level, to environmental cues. The availability of the ligand coordinates, in 

time and space, the activity of these powerful gene regulators. They are thus involved in many 

physiological and developmental processes and, as a consequence, they are major targets of 

endocrine disruptors that are released in the environment by human activities (Henley and 

Korach, 2006). In insects, their role has been well characterised in various developmental 

processes such as: embryo segmentation, moulting, metamorphosis and eye morphogenesis 

(King-Jones and Thummel, 2005). They are very promising targets for the control of insect 

pests (Palli et al., 2005). Interestingly, most nuclear receptors act as protein dimers and many 

of them can interact with each other in heterodimeric partnership, thus forming regulatory 

networks. The ecdysone regulatory cascade that controls metamorphosis in Drosophila, where 

9 out of 18 nuclear receptors are involved, best illustrates these crosstalks. 
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Thanks to the sequencing of the Tribolium genome by the Baylor Human Genome 

Sequencing Center, we were able to identify the first complete set of nuclear receptors for a 

Coleopteran insect. This provides the opportunity for a phylogenetic analysis of these proteins 

encompassing the four major groups of holometabolous insects. Since we have described 

earlier the acceleration of the ecdysone receptor (ECR-USP) in Mecopterida (Bonneton et al., 

2003; Bonneton et al., 2006), we ask here whether the other nuclear receptors acting in the 

ecdysone cascade were affected similarly. Our analysis suggests how the different partners of 

an essential developmental regulatory network can coevolve through a lineage specific 

acceleration. 

 

2. Materials and methods 

 

2.1 Annotation and phylogenetic analysis of Nuclear Receptors 

 

We used the nuclear receptors sets of Drosophila melanogaster and Apis mellifera 

(Velarde et al., 2006) to query the Tribolium castaneum genome (version 2.0). The same 

approach was used against Genbank in order to recover all the nuclear receptors protein 

sequences from the six other insect’s species whose genome was available (Fig. 1). When a 

nuclear receptor was missing, or was too short for one species, nucleic acid sequences were 

retrieved and analysed with two gene prediction programs: Augustus (Stanke et al., 2006) and 

Genescan (Burge and Karlin, 1997). When different isoforms were recovered, only the 

longest one including a DBD and a LBD was chosen for analysis. Predicted protein-coding 

sequences were aligned using SEAVIEW (Galtier et al., 1996) and manual corrections were 

made, when possible, following the phylogenetic trees and by the structural data (FCP web 
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tool: Garcia-Serna et al., 2006). All the Tribolium castaneum nuclear receptors genes could 

easily be identified (table 1). Note that this task was facilitated by the fact that TLL, EG, ECR 

and USP had been cloned prior to the sequencing of Tribolium genome (Schröder et al., 2000; 

Bucher et al., 2005; Iwema et al., submitted). By contrast, only 17 nuclear receptors were 

identified for Bombyx, among which only 12 are long enough to be included into the analysis. 

The vertebrates sequences, mainly retrieved from NuReBase, were used as outgroup (Ruau et 

al., 2004). Phylogenetic reconstruction was made with the BIONJ algorithm (Gascuel, 1997), 

an improvement of the Neighbor Joining method (Saitou and Nei, 1987), with Poisson 

correction for multiple substitutions, or with the maximum parsimony method, as 

implemented in Phylo_Win (Galtier et al., 1996). All positions with gaps were excluded from 

analyses. 

 

2.2 Quantitative analysis of nuclear receptors evolution 

 

We aligned all the available protein sequences of arthropods independently for each of 

the 18 nuclear receptors that possess a LBD and that are found in all insects. This excludes 

NR2E6, found only in Apis and Tribolium, and the proteins of the NR0 subfamily, which do 

not possess a LBD. The same procedure was applied for four other transcription factors (E74, 

BR, Kr-h1 and E93) involved in the control of the ecdysone pathway (Fig. 5). Alignments 

were automatically performed using ClustalW (Thompson et al., 1994) with manual 

correction in Seaview (Galtier et al., 1996). After removing of partial uninformative 

sequences, we considered only the sequences from holometabolous insects. All positions with 

gaps and misaligned regions were removed, resulting in alignments of protein regions mostly 

encompassed in the DBD and LBD domains. Only four species allowed to recover a good set 

of alignments allowing the comparison between all the 18 nuclear receptors: Drosophila 
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melanogaster, Aedes aegypti, Tribolium castaneum and Apis mellifera. One exception is 

HR83, for which we had to use the sequence of the closely related mosquito Anopheles 

gambiae instead of the short sequence (85 amino-acids) of DBD identified from Aedes 

aegypti genome. We performed supplementary analysis with a set of five species, adding the 

sequences of Bombyx mori available for 12 of the 18 nuclear receptors. 

The pattern of evolution of each nuclear receptor was determined by the calculation of 

the branch lengths of a phylogenetic tree gathering the four or five species, using a predefined 

unrooted topology (Fig. 4C; Supp. Fig. 2C). Branch lengths were estimated with maximum 

likelihood methods using the PAML program (Yang, 1997). Likelihood calculations were 

performed under the JTT amino acid substitution model (Jones et al., 1992) plus rate 

heterogeneity between sites, estimated by a discrete gamma law with six categories (with the 

shape parameter as an additional free parameter). In order to check whether the estimation of 

the distances with a small number of species was robust enough and avoid a possible 

taxonomic bias, we constructed trees including all the arthropods sequences available for each 

protein. Then, we extracted the “subtrees” corresponding to the four or five species of 

reference. The comparison of the distances obtained with both sets of species revealed a very 

good linear correlation (R2 = 0.98; p-value < 10-15) with values closed to the equality (slope of 

the linear regression comprised between 0.9 and 1 for a linear model with a null intercept). 

 

We adopted an approach used in morphometric analysis to compare, in a quantitative 

manner, the evolution of the nuclear receptors during the radiation of holometabolous insects. 

Using either the set of 18 trees established with four species, or the set of 12 trees with five 

species, we performed principal component analysis (PCA) to compare the patterns of 

evolution of the different nuclear receptors. The unrooted tree computed for each nuclear 

receptor was then considered as an « individual » that could be described by as many 
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variables as branches: 5 variables for four species and seven variables for five species. We 

performed non-normed PCA using the package ade4 (Chessel et al., 2004) of the R software 

(R Development Core Team, 2006). We displayed factorial maps (Fig. 4AB) by means of the 

biplot procedure, which allows visualising simultaneously the distribution of individuals and 

the correlation between variables and principal axes (Chessel et al., 2004). 

In order to discriminate groups of proteins with similar patterns of evolution, we 

performed hierarchical clustering analysis based on factorial coordinates following four 

distinct agglomeration methods (Ward’s method, complete, single and average linkage 

method) as implemented in the package stat of the R software (R Development Core Team, 

2006). Bold branches on figure 4D and supplemental figure 2D underline the clusters, which 

are found with all the four different hierarchical methods. 

To compare the patterns of evolution observed for nuclear receptors with the global 

genomic trend during holometabolous radiation, insect phylogenomic trees from the literature, 

estimated with 64,134 aa (Savard et al., 2006a) 705,502 aa or 336,069 aa (Zdobnov and Bork, 

2007), were projected on the factorial maps established with trees computed for nuclear 

receptors (Fig. 4). 

In addition, the same PCA procedure as in figure 4 was performed only with the 

phylogenetic trees of eight nuclear receptors (ECR, USP, E75, HR3, HR4, E78, HR39 and 

FTZ-F1) plus four other transcription factors (E74, Kr-h1, E93 and BR), forming a sample of 

twelve genes involved in the control of the ecdysone pathway (King-Jones and Thummel, 

2005). For this analysis (Fig. 5), we did not comprise the length of the Drosophila branch 

among the variables of the PCA because of an atypical strong divergence of the Drosophila 

protein E93. Indeed, this long branch in the tree of E93 conceals the pattern observed if we 

exclude E93 from the analysis. Conversely, the reported PCA (Fig. 5) yields factorial maps 

closed to the scatter diagrams obtained without E93, and moreover the pattern disclosed on 
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these diagrams is not affected whether we do not include the Drosophila branch in the 

variables of the PCA taking into account only the eleven remaining proteins (data not shown). 

 

3. Results 

 

3.1 The genome of Tribolium castaneum contains 21 nuclear receptors 

 

Thanks to the conserved DBD and LBD domains, all the Tribolium castaneum nuclear 

receptors genes could be identified by blast searches on the available gene predictions 

(GLEAN, Genbank). The Tribolium genome contains 19 typical nuclear receptors, 

representing all of the six subfamilies described so far. An additional subset of two nuclear 

receptors lacking a LBD (subfamily NR0, group A) is also present (table 1 ; Fig. 1). Overall, 

as expected, the DBDs show high conservation (76-99%) while the LBDs are more divergent 

(26-94%) when compared to the Drosophila orthologs. The most divergent nuclear receptor is 

the insect’s specific HR83 (NR2E5), of unknown function, while the most conserved is SVP 

(NR2F3), the ortholog of COUP-TF, an orphan receptor essential for metazoan development. 

Unlike the Hox genes, which are clustered on one single complex, we could map 18 nuclear 

receptors genes on seven of the ten linkage groups of Tribolium (table 1). 

The identification of Tribolium nuclear receptors reveals the first complete set for a 

Coleoptera. It is therefore now possible to compare this family of proteins between all the 

major orders of holometabolous insects. 

 

3.2 Comparative analysis of nuclear receptors in insects 

 



18/06/08  10 

The set of 21 Tribolium nuclear receptors is very close to the set of other insects, 

which range from 20 in Aedes aegypti to 22 in honeybee (Fig. 1). The novelties are restricted 

to two genes, which are present in some groups of species and not in others. 

First, the gap gene knirps is found only in brachyceran flies (Drosophila and Musca 

domestica), but not in mosquitoes or any other holometabolous insect (fig 1; fig 2A). All 

species studied so far (including Tribolium and Apis) possess at least two NR0 genes, 

suggesting that the duplication, which produced eagle and knirps-like, arose early during 

insect evolution. After duplication, knirps diverged rapidly from its paralog, which is 

probably knirps-like, as suggested by the chromosomal positions and the strong conservation 

of function during development between these two genes (Rothe et al., 1992; Lunde et al., 

2003). All the atypical NR0 genes are located on a single chromosome in the genome of 

Tribolium (LG3), Drosophila (3L, 77CE-78E) and Anopheles (3L, 38B) (supplementary 

table). 

By contrast, the NR2E6 gene was specifically lost in Diptera, and maybe in 

Lepidoptera as well. This gene has no vertebrate homolog and it has been identified only in 

Tribolium and in Apis, with 67% of overall similarity between the proteins of these two 

species (97% for the DBD only). The NR2E group contains several insect specific nuclear 

receptor, such as dissatisfaction and HR83, together with genes that share clear homologs 

with vertebrates, such as tailless and HR51/PNR (NR2E3). The phylogenetic analysis of this 

group shows that NR2E6 is a new insect’s specific nuclear receptor of the NR2E subgroup 

that is not significantly related to NR2E3 (Fig. 2B). In Tribolium, HR51 (NR2E3) is located 

on the linkage group 7 while NR2E6 is on the LG5. Therefore, we suggest using the 

nomenclature-based name NR2E6 for this gene, rather than the trivial name PNR-like, which 

were both proposed previously by Velarde et al. (2006). 
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Since both ECR and USP experienced a strong acceleration of evolutionary rate in 

Mecopterida (Bonneton et al., 2006), we looked whether a similar trend could be observed for 

other nuclear receptors. As a first step for this test, we performed a simple phylogenetic 

analysis with each of the 18 nuclear receptors that possess a LBD and that are found in all 

insects. This excludes NR2E6 and the proteins of the NR0 subfamily. It is not our aim to 

provide here a full phylogeny of the whole family, but rather to use the trees to detect possible 

accelerations (Bonneton et al. 2003). If we consider only the proteins with orthologs 

available, at least, in Diptera, Lepidoptera, Coleoptera and Hymenoptera, the results reveal 

two kinds of topologies: either a well supported divergence of the Mecopterida 

(Diptera+Lepidoptera) branch, or not (table 2). On the first group we find E75, HR3, ECR, 

USP, HR78 and HR4. The DBD sequences are highly conserved (Supp. Fig. 1), while the 

Mecopterida specific differences are scattered along the LBD domain, which show low 

identity percentage (table 1). As an example, the figure 3 shows an unrooted tree of NR1D 

and NR1F proteins, which correspond to, respectively, E75/REV-ERB and HR3/ROR. Note 

that, in contradiction with the known phylogeny, Tribolium sequences are grouped with Apis 

and other non-Mecopterida orthologs. This aberrant topology is due to a long branch 

attraction, because of the acceleration of evolutionary rate in the Mecopterida lineage. Similar 

results were already described for ECR and USP (Bonneton et al., 2003). By contrast, HNF4, 

TLL, SVP, HR38, FTZ-F1 and HR39 have a much more conserved LBD sequence (table 1) 

and their respective tree do not show a significantly supported Mecopterida branch (table 2; 

see also figure 2B for an example of such a tree with TLL). 

In conclusion, the main event that occurred during the evolution of nuclear receptors 

in holometabolous insects is probably the strong acceleration of some of its members in the 

Mecopterida lineage. In order to characterize further this spectacular divergence, we decided 

to perform a quantitative and comparative analysis of the rates of divergence. 
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3.3 Overacceleration among nuclear receptors in Mecopterida 

 

The evolutionary pattern of nuclear receptors was analysed using a quantitative 

comparison of the divergence within a common set of holometabolous insect species. Branch 

lengths of phylogenetic tree for each nuclear receptor were first computed by maximum 

likelihood methods. Then, the computed trees were compared through a morphometric 

approach, by means of a principal component analysis (PCA). Here, we considered each tree 

as an « individual » harbouring a morphology with a specific size (the total length of the tree, 

i.e. the average number of substitutions per site that occurred during the evolution of 

holometabolous insects) and a specific form (the relative lengths of the branches, i.e. the 

divergence observed along each lineage). Despite the availability of the Bombyx genome, it 

was sometimes impossible to recover some suitable sequences for Lepidoptera. Therefore, we 

performed analyses with four species (all the 18 nuclear receptors) or with five species (only 

12 proteins) (see materials and methods). Both studies reveal the same pattern on factorial 

maps (Fig. 4A,B; Supp. Fig.2A,B). 

Nearly all variables (branch lengths) are correlated with the first principal axis that 

explains a large part of the variance: 57% with four species and 63% with five species (Fig. 

4A; Supp. Fig.2A). This is consistent with a classical result in morphometry, where the first 

axis of the PCA translates the variation of the global size of individuals, in our case the 

variation in the total length of the phylogenetic trees (Jolicoeur and Mosimann, 1960). In 

other words, the first axis ranks the nuclear receptors according to the average amount of 

substitutions per site. If we consider that the selected sites for each of the nuclear receptors 

constitute representative and comparable samples of each gene (regions encompassed in the 

DBD and LBD domains), then the first axis distributes nuclear receptors along a gradient 
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from genes with most constrained evolution (for example: SVP, FTZ-F1, HR39, HR38) to 

genes with higher rates of evolution in holometabolous insects (for example: USP, HR78, 

ERR, E78, HR83). 

The second principal axis supports a large part of the remaining variance: 38% with 

four species and 61% with five species (Fig. 4B; Supp. Fig.2B). This remaining variance 

translates the diversity of the evolutionary patterns observed between nuclear receptors, if we 

exclude the heterogeneity of their global evolution rates viewed on the first principal axis. 

Strikingly, the second axis is highly correlated with only one variable in both cases: the length 

of the “Mecopterida-Diptera” branch for the four species trees or the length of the 

“Mecopterida” branch for the five species trees. Importantly, this variable is poorly correlated 

with PCA axis 1, showing that the global evolutionary rate of each protein does not explain 

the variability of the divergence along this branch. Furthermore, the second principal axis is 

remarkably supported by the existence of a highly discriminated group of five nuclear 

receptors : HR4, E75, USP, ECR and HR3 (Fig. 4B; Supp. Fig.2B), which show a longer 

Mecopterida branch, when compared to other nuclear receptors. This group of five proteins 

with a strong divergence along the Mecopterida stem branch is also clearly revealed by 

hierarchical clustering analysis based on factorial coordinates (Fig. 4D; Supp. Fig.2D). 

Since a genome-wide acceleration occurring along the “Mecopterida” and “Diptera” 

branches was reported recently for housekeeping genes (Savard et al. 2006a ; Savard et al. 

2006b) and for a larger sample of single-copy orthologs (Zdobnov and Bork, 2007), we 

examined the specificity of the evolutionary acceleration of these five nuclear receptors by 

projecting published insect’s phylogenomic trees onto the factorial maps established for 

nuclear receptors (Fig. 4AB; Supp. Fig.2AB). Considering that the projected points are not 

clustered with the five discriminated proteins and that they are scattered within the group of 

other nuclear receptors, we conclude that the acceleration affecting HR4, E75, USP, ECR and 



18/06/08  14 

HR3 constitutes an additional event to the global genomic trend. All the other nuclear 

receptors followed the trend of evolution that characterise the Mecopterida divergence. 

Interestingly, we can also notice that the projection of the phylogenomic tree estimated with 

housekeeping proteins (Savard et al, 2006b) is placed on the left of the factorial map, close to 

more constrained genes ( in Fig. 4A). Since housekeeping proteins are assumed to be under 

strong selective constraints, this result is consistent with the interpretation of the first principal 

axis. 

Thus, HR4, E75, USP, ECR and HR3 underwent an overacceleration of evolutionary 

rate during the emergence of the Mecopterida clade, which did not affect the other nuclear 

receptors. 

 

3.4 Coevolution at the top of the ecdysone regulatory cascade 

 

Remarkably, the five overaccelerated nuclear receptors act together in the upstream 

part of the ecdysone regulatory cascade that triggers Drosophila metamorphosis (King-Jones 

and Thummel, 2005). ECR and USP constitute the heterodimeric ecdysone receptor, E75 is a 

primary early response gene and HR3 and HR4 are early late genes. However, other nuclear 

receptors acting early during this hormonal response, such as E78, HR39 or FTZ-F1, do not 

show this overacceleration (Fig. 4). It seems, therefore, that only some part of the upstream 

ecdysone regulatory network may have evolved rapidly in Mecopterida. In order to test this 

hypothesis, we completed a principal component analysis with twelve transcription factors 

known to regulate the top of this cascade: the eight nuclear receptors described above, plus 

E74 (Ecdysone induced protein 74EF), BR (Broad), E93 (Ecdysone induced protein 93F) and 

Kr-h1 (Kruppel-homolog 1). The factorial map discloses a clear separation between two 

groups of proteins (Fig. 5). We find the same cluster of five nuclear receptors, plus Kr-h1, 
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with the overacceleration along the “Mecopterida-Diptera” branch. The other group contains 

E74, E93, BR and the three nuclear receptors HR39, FTZ-F1 and E78. 

This result shows that six out of the twelve classic transcriptional regulators known to 

act at the top of the ecdysone pathway underwent an overacceleration in Mecopterida. 

Consequently, we can assume that coevolution probably occurred between a sub-network of 

overaccelerated nuclear receptors that control the ecdysone regulatory cascade (Fig. 6). 

 

4. Discussion 

 

4.1 The set of nuclear receptors is conserved in holometabolous insects 

 

The set of nuclear receptor genes in holometabolous insects ranges from 20 in Aedes 

aegypti to 22 in honeybee (Fig. 1). The evolution of this metazoan protein family is complex, 

with many variations (duplications, losses) around a common theme of six subfamilies 

(Bertrand et al., 2004). Unlike nematodes, where the genome of Caenorhabditis elegans and 

Caenorhabditis briggsae contain 283 and 268 nuclear receptors, respectively (Stein et al., 

2003), the monophyletic group of holometabolous insects did not experience a lineage-

specific expansion within the nuclear receptors family. If more genomic data are needed to 

understand the surprising diversity observed in ecdysozoans, it is now clear that there is a 

strong conservation of the number and identity of nuclear receptors in holometabolous 

insects. 

One novelty is the presence of the NR2E6 gene in Tribolium and in Apis but not in 

Diptera. In honeybee, the transcripts of this gene were found in the brain and in the eye of 

pupa and adult, a pattern of expression which is reminiscent of the retina-specific pattern of 

PNR, the human homolog of HR51 (Velarde et al., 2006). Interestingly, all the members of 
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the NR2E group apparently share a primary function in the developing nervous system 

(Laudet and Bonneton, 2005). The beetle genome, like the honeybee, is less derived than the 

Diptera genome and contains more ancestral genes. It is possible that NR2E6 is one of these 

ancestral genes that will eventually be identified in other arthropods. The question of its 

origin remains open, since it is absent in vertebrates and in nematodes. 

The fact that the two model organisms, Drosophila and Tribolium, have very similar 

sets of nuclear receptors is very promising for the understanding of this family in insects. 

Indeed, it means that genetic and physiologic studies based on both species will complement 

each other and should have general implications for other holometabolous insects. However, 

homologous genes can give different proteins, because of divergent evolutionary rates that 

can occur even in the absence of gene duplication and loss. In that respect, USP, HR78, ERR, 

E78 and HR83 seem to be less constrained, with higher rates of evolution in holometabolous 

insects, when compared to SVP, FTZ-F1, HR39 or HR38 (Fig. 4A). Such divergences must 

be taken into account for future comparisons, as evidenced by our work showing that, if USP 

has a large liganded pocket in Drosophila and in the moth Heliothis, it is an orphan receptor 

with no ligand binding pocket in Tribolium (Clayton et al., 2001; Billas et al., 2001; Iwema et 

al., submitted). The opportunity to analyse Drosophila and Tribolium at the same time should 

reveal more about such fundamental differences between nuclear receptors. Tribolium is 

particularly favoured as a model, as its development is more representative of the early 

holometabolous insects. 

 

4.2 Nuclear receptors display two modes of evolutionary rate in holometabolous insects 

 

We have previously shown that two nuclear receptors, ECR and USP, underwent an 

acceleration of evolutionary rate in Mecopterida (Bonneton et al., 2003; Bonneton et al., 
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2006). Both proteins heterodimerise to constitute the ecdysone receptor in insects as well as in 

crabs and ticks (Henrich, 2005). Therefore, they act together at the top of an essential 

hormonal pathway that controls developmental timing and metabolism in arthropods. Since 

both proteins are involved in so many vital interactions, such a divergence must require 

coevolution of their other partners. Actually, it was revealed recently that a genome-wide 

acceleration occurred along the Mecopterida branch (Savard et al. 2006a; Savard et al. 2006b; 

Zdobnov and Bork, 2007). Thus, it was possible that other nuclear receptors experienced the 

same evolution. This possibility was tested by a quantitative analysis of the evolutionary rate, 

which revealed two important features of this family. 

First, we have found that nuclear receptors show a “gradient” of average substitution 

rates during the radiation of holometabolous insects, from slow evolving proteins, whose 

structure and function are known to be highly conserved throughout animals, such as 

SVP/COUP-TF, HNF4, or HR38/NURR1, to fast evolving proteins, such as HR83 or E78. 

Assuming that housekeeping genes, which by definition are expressed in all cells and at all 

times, are under strong purifying selection, the comparison of evolution patterns between 

nuclear receptors and housekeeping genes (Savard et al. 2006a ; Savard et al. 2006b) or genes 

from larger genomic samples (Zdobnov and Bork, 2007) leads us to conclude that the 

majority of nuclear receptors underwent high selective pressure in insects. Only HR83, E78, 

ERR, HR78 and USP show a likely more relaxed evolution than housekeeping genes. 

Second, our results show that nuclear receptors can be divided into two groups, 

according to their rate of evolution during the early divergence of the Mecopterida clade. In 

one group of 13 proteins, the rate is similar to the Mecopterida genome acceleration (Savard 

et al. 2006b). In a second group of five nuclear receptors (ECR, USP, HR3, E75 and HR4), 

we observe an overacceleration of the evolutionary rate along the Mecopterida stem branch, 

which is suggestive of a release of selective pressure after the initial event of genome-wide 
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acceleration. Notably, this putative release plays on the LBD, but not on the DBD, which 

structure and sequence remained very constrained in every receptor (Table 1). This 

overacceleration can be detected by a simple phylogenetic analysis, producing trees where the 

Mecopterida species are significantly separated from the other holometabolous species. The 

only exception is HR78, which shows a Mecopterida divergence on the trees, despite a lack of 

overacceleration. In that case, the aberrant topology is likely due to the extreme divergence of 

the Bombyx mori sequence (Fig. 4)(Hirai, 2002). The PCA method is thus more reliable to 

detect such events, especially if the taxonomic sample is small and not fully representative of 

the phylogeny. 

We can now conclude that the acceleration of ECR and USP observed initially is in 

fact an overacceleration, which concerns three other nuclear receptors as well. This 

overacceleration occurred during the diversification of Mecopterida, approximately 280-300 

million years ago (early Permian). In any rigour, the fact that this divergence is Mecopterida 

specific requires analysis of sequences from all groups of this superorder, not only Diptera 

and Lepidoptera, but also Trichoptera, Mecoptera and Siphonaptera. This evidence has been 

provided for ECR and for USP (Bonneton et al., 2006). 

 

4.3 Overacceleration at the top of the ecdysone cascade in Mecopterida 

 

If we consider the five overaccelerated nuclear receptors (E75, HR3, ECR, USP and 

HR4), they share an obvious common characteristic: they all act at the top of the ecdysone 

cascade that triggers metamorphosis. Most effects of ecdysone are mediated through the 

heterodimeric ECR-USP receptor that directly regulates the transcriptional activity of the 

three other nuclear receptors. E75 (Eip75B, the classic puff at E75B) is induced as a primary 

early response gene, while HR3 and HR4 are induced as early late genes (King-Jones and 
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Thummel, 2005). HR3 is induced after puparium formation, represses early genes and is a 

direct activator of the prepupal regulator FTZ-F1. In Drosophila, as well as in Bombyx, E75 

acts as a repressor of HR3, through direct heterodimerisation (White 1997; Swevers 2002; 

Hiruma 2004; Palanker et al., 2006). HR4 acts with HR3 in the regulation of target genes, 

including FTZ-F1 (King-Jones et al., 2005). Therefore, cross-regulatory interactions between 

E75, HR3 and HR4 converge on FTZ-F1 to discriminate between the ecdysone responses of 

the first (puparium) and second (pupation) hormonal peaks that initiate the metamorphosis 

process. All these results show that the five overaccelerated nuclear receptors are important 

players of the same regulatory network. 

Several other proteins are known to act early in the ecdysone pathway. Among these 

classic regulators are the nuclear receptors E78 and HR39, as well as different transcription 

factors, such as: E74, BR, E93 and Kr-h1. Our results show that these genes did not 

experienced the Mecopterida overacceleration. One exception is Kr-h1, an ecdysone-

regulated gene encoding a zinc-finger protein, which modulates the prepupal response 

(Pecasse et al., 2000; Beck et al., 2005). Unfortunately, nothing is known about its possible 

contacts with other key proteins of the ecdysone pathway. We hypothesize that the upstream 

part of the ecdysone cascade includes at least one network of closely interacting proteins that 

might be physically independent of the other regulators. This modularity would explain the 

coevolution of the five nuclear receptors that act together. If one member of the network 

suddenly accumulates mutations, then a parallel overacceleration of its partners would help to 

maintain their interactions. The rate of evolution is higher when the connecting proteins have 

transient interactions, which is the case for nuclear receptors (Pal et al., 2006). In such a 

scenario, the interface domains would be the main targets of molecular adaptation. 

Interestingly, by comparing Drosophila and Tribolium, we found that the ecdysone binding 

ability of ECR has not changed during this evolution. However, the heterodimerisation 
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surface between ECR and USP has accumulated changes, therefore creating a new interface 

(unpublished results). In the same line of idea, it would be very interesting to compare the 

evolution of the dimerisation contacts that occur between HR3 and E75. If physical 

interactions often induce coevolution, then coevolution can help to detect new interactions. 

Indeed, different methods are using coevolution between proteins, domains, or even between 

amino acids to predict biological networks (Pazos et al., 1997; Lichtarge et al., 2003; Fraser 

et al., 2004). 

 The patterns of evolution among nuclear receptors are in fact not always so 

straightforward. For example, USP also heterodimerise with HR38, SVP and HR78 (Baker et 

al., 2003; Miura et al., 2002; Zhu et al., 2003; Hirai et al., 2002). However, none of these 

proteins shows the Mecopterida overacceleration. Some of these interactions are even 

conserved in vertebrates, such as RXR (USP) with NURR1 and NGFIB (HR38). In such 

cases, it is possible that coevolution concerns only few amino acids, resulting in an 

undetectable acceleration in our analysis of the whole LBD. Testing this possibility requires 

to determine the structure of the heterodimer, in order to map the putative accelerated 

residues. 

 

4.4 Maintenance of the ecdysone pathway 

 

 If the proteins of a network controlling the ecdysone cascade have diverged, then what 

about the network itself? In other words, is the ecdysone response different between 

Mecopterida and other holometabolous insect’s species? Most of the functional studies have 

been done using Diptera and Lepidoptera species, and the advent of Tribolium as a new model 

will allow filling this lack of data. However, all available evidences suggest that this vital 

hormonal control is well conserved among insects (Truman and Riddiford, 2002; Lafont et 
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al., 2005). To cite only the most recent and compelling results, Xavier Bellés and his 

colleagues, in Barcelona, have shown, using the heterometabolous insect Blattella germanica, 

that the phenocopies of ECR, USP and HR3 genes mimic very closely the phenotype of the 

corresponding mutants in Drosophila (Cruz et al., 2006; Martin et al., 2006; Cruz et al., 

2007). These Blattella proteins are more similar to their Tribolium homologs than to their 

Mecopterida homologs. Therefore, we can reasonably assume that, despite the acceleration of 

six major regulators acting at the top of the ecdysone cascade, the output of this pathway is 

very likely conserved among holometabolous and heterometabolous insects. This view is 

compatible with the coevolution hypothesis presented above: “For things to remain the same, 

everything must change.” (Tomasi di Lampedusa, 1958). 
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Supplementary Table. Chromosomal location of insect’s nuclear receptors. 

 

Supplementary Figure 1. Alignment of the DBD protein sequences of the five overaccelerated 

nuclear receptors. Dots indicate identical amino acids, when compared to Drosophila 

melanogaster. The positions of cysteine residues of the zinc-finger are highlighted in grey. 

 

Supplementary Figure 2. Principal component analysis of the evolution of nuclear receptors 

of holometabolous insects. A non-normed PCA was performed using the branch lengths of a 

predefined phylogenetic tree (C) computed for twelve nuclear receptors with identified 

ortholog sequences in Drosophila melanogaster, Aedes aegypti, Bombyx mori, Tribolium 

castaneum and Apis mellifera. On the PCA factorial maps (A, B), the seven variables (i.e. 

lengths of the seven branches called dmel, aaeg, Diptera, bmor, Mecopterida, tcas and amel 

on C) are symbolized by arrows and superimposed on the individuals (nuclear receptors). The 
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plots display, either the first and second principal axes (A), or the second and third principal 

axes (B). Eigenvalues bar charts show, in black, the two axes used to draw each biplot. 

Clustering dendrogram (D) based on the position of nuclear receptors on the factorial map 2-3 

(B) was computed following Ward’s method. Bold branches underline the clusters, which are 

found using four different hierarchical methods (see materials and methods). The 

supplementary points on A and B correspond to the projections of insect’s phylogenomic 

trees obtained with concatenated alignments of large numbers of genes:  33,809 aa (Savard 

et al., 2006b), 336,069 aa and 705,502 aa (Zdobnov and Bork, 2007). 

 

 

Figure legends 

 

Figure 1. Nuclear receptors of holometabolous insects. Both the usual Drosophila name and 

the official nomenclature name of the proteins are given. For each nuclear receptor, a 

coloured box indicates its presence/absence in the genome for each of the seven species 

sequenced so far. The tree on the left shows the phylogeny of the species, with the 

Mecopterida indicated in red. The tree at the bottom indicates the putative relationships 

between the nuclear receptors (Bertrand et al., 2004). The nuclear receptors that experienced 

an overacceleration in Mecopterida are highlighted in red. Note that, for Bombyx, the current 

status of the genome sequence does not allow to determine the presence/absence of some 

NR2E genes, as symbolised with question marks and dotted-line boxes. 

 

Figure 2. Phylogeny of the NR0 subfamily (A) and of the NR2E group (B) in insects. 

Unrooted trees were constructed using the Neighbour Joining method with the maximum 

length of sequence, resulting in 140 complete aligned sites for NR0 and 183 sites for NR2E. 
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Bootstrap values (Neighbour Joining/Maximum Parsimony) are indicated only for branches 

discussed in the text. The names of proteins and species are those indicated in figure 1. 

Tribolium nuclear receptors are highlighted with a black arrowhead (). Measure bar: 

differences per site. 

 

Figure 3. Phylogeny of E75 and HR3. This unrooted tree was constructed using the 

Neighbour Joining method with the maximum length of sequence, resulting in 311 complete 

aligned sites. Bootstrap values (Neighbour Joining/Maximum Parsimony) are indicated only 

for branches discussed in the text. The names of proteins and species are those indicated in 

figure 1. Tribolium nuclear receptors are highlighted with a black arrowhead (). Measure 

bar: differences per site. 

 

Figure 4. Principal component analysis of the evolution of nuclear receptors of 

holometabolous insects. A non-normed PCA was performed using the branch lengths of a 

predefined phylogenetic tree (C) computed for 18 nuclear receptors with identified ortholog 

sequences in Drosophila melanogaster, Aedes aegypti, Tribolium castaneum and Apis 

mellifera. On the PCA factorial maps (A, B), the five variables (i.e. lengths of the five 

branches called: dmel, aaeg, amel, tcas and Mecopterida-Diptera on C) are symbolized by 

arrows and superimposed on the individuals (nuclear receptors). The plots display, either the 

first and second principal axes (A), or the second and third principal axes (B). Eigenvalues 

bar charts show, in black, the two axes used to draw each biplot. Clustering dendrogram (D) 

based on the position of nuclear receptors on the factorial map 2-3 (B) was computed 

following Ward’s method. Bold branches underline the clusters, which are found using four 

different hierarchical methods (see materials and methods). The supplementary points on A 

and B correspond to the projections of insect’s phylogenomic trees obtained with 
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concatenated alignments of large numbers of genes:  33,809 aa (Savard et al., 2006b), 

336,069 aa and 705,502 aa (Zdobnov and Bork, 2007). 

 

Figure 5. Principal component analysis of the evolution of transcription factors involved at the 

top of the ecdysone regulatory cascade. The same analysis as presented in figure 4 was 

performed with the eight nuclear receptors involved in the early ecdysone pathway plus E74, 

E93, Kr-h1 and BR (A). The PCA biplot (second and third principal axes) is built and 

reported with the same conventions as in figure 4. (B) A predefined phylogenetic tree is used 

to compute the branch lengths standing for variables in the PCA; the length of Drosophila 

branch (dotted line) was not retained for the PCA due to an atypical strong divergence of the 

Drosophila protein E93 (C) Clustering dendrogram based on the position of genes on the 

factorial map was computed following Ward’s method. Bold branches underline the clusters, 

which are found using four different hierarchical methods (see materials and methods). 

 

Figure 6. Summary of the ecdysone regulatory cascade, with the twelve transcription factors 

known to act as classic early regulators during the onset of Drosophila metamorphosis. After: 

Thummel (2001); King-Jones et al., (2005); King-Jones and Thummel (2005). Nuclear 

receptors are boxed. The six proteins that overaccelerated in Mecopterida are in red. The 

known protein-protein interactions are indicated by large black bonds. 
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NR 

nomenclature 

Namea Drosophila ortholog Tribolium 

Accession LGb DBD/LBD 

%identityc 

NR1D3 E75 

(REVERB) 

Ecdysone-induced protein 75B 

CG8127 

TC_12440 9 99/58 

NR1E1 E78 Ecdysone-induced protein 78C 

CG18023 

TC_03935 3 */60 

NR1F4 HR3 

(ROR) 

Hormone receptor-like in 46 

CG33183 

TC_08909 7 97/62 

NR1H1 ECR 

(LXR/FXR) 

Ecdysone receptor 

CG1765-PA 

CG1765-PB 

TC_12112 

Ecra :AM295015 

TC_12113 

Ecrb :AM295016 

9 88/66 

NR1J1 HR96 Hormone receptor-like in 96 

CG11783 

TC_10645 ? 78/53 

NR2A4 HNF4 

(HNF4) 

Hepatocyte nuclear factor 4 

CG9310 

TC_08726 7 94/78 

NR2B4 USP 

(RXR) 

Ultraspiracle 

CG4380 

TC_14027 

TC_14028 

AM295014 

5 94/45 

NR2D1 HR78 Hormone-receptor-like in 78 

CG7199 

TC_04598 1=X 90/37 

NR2E2 TLL 

(TLX) 

Tailless 

CG1378 

TC_00441 

AAF71999 

2 81/38 

NR2E3 HR51 

(PNR) 

Hr51 

CG16801 

TC_09378 7 97/67 

NR2E4 DSF dissatisfaction 

CG9019 

TC_01069 

TC_01070 

2 95/68 

NR2E5 HR83 HR83 

CG10296 

TC_10460 ? 76/26 

NR2E6d Nameless No ortholog TC_13148 5 * 

NR2F3 SVP 

(COUP-TF) 

seven up 

CG11502 

TC_01722 ? 98/94 

NR3B4 ERR 

(ERR) 

estrogen-related receptor 

CG7404 

TC_09140 

TC_09141 

7 */54 

NR4A4 HR38 

(NURR1) 

Hormone receptor-like in 38 

CG1864 

TC_13146 5 98/78 

NR5A3 FTZ-F1 

(SF1) 

ftz transcription factor 1 

CG4059 

TC_02550 3 98/74 

NR5B1 HR39 Hormone receptor-like in 39 

CG8676 

TC_14986 6 90/77 

NR6A1 HR4 

(GCNF1) 

Hr4 

CG16902 

TC_00543 2 96/56 

NR0A1 

 

KNI knirps 

CG4717 

No ortholog * * 

NR0A2 

 

KNRL knirps-like 

CG4761 

TC_03413 3 97/* 

NR0A3 

 

EG eagle 

CG7383 

TC_03409 

CAF21851 

3 93/* 

Table 1. Nuclear receptors of Tribolium castaneum. 
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anames used in this article ; the name of one clear vertebrate orthologue of the same group is given 

into brackets. bLG : Linkage Group. cDBD/LBD identity : % amino-acid identity between the 

homologous Tribolium and Drosophila proteins. dnot an official nomenclature name ; proposed by 

Velarde et al. (2006). * : no data 

 

 

Mecopterida NR 

Diptera Lepidoptera Bootstrap 

Other 

insects 

Outgroup Aligned sites 

NR1D3 E75 2 4 100/100 3 E75 crustacea 492 

NR1E1 E78 3 0 92/57 2 E75 arhtropodab 307 

NR1F4 HR3 4 5 99/100 3 ROR vertebrates 406 

NR1H1 ECR 9 5 100/100 7 ECR arthropodab 370 

NR1J1 HR96 4 0 63/76 2 NR1I vertebrates 312 

NR2A4 HNF4 4 2 -/- 2 HNF4 vertebrates 319 

NR2B4 USP 7 6 100/100 7 USP arthropodab 298 

NR2D1 HR78 4 1 98/82 3 NR2C vertebrates 275 

NR2E2 TLL 5 1 -/- 2 TLL vertebrates 335 

NR2E3 HR51 4 0 96/83 2 PNR vertebrates 200 

NR2E4 DSF 4 0 75/- 2 TLL insects 230 

NR2E5 HR83 3 0 96/97 2 NR2E3-6 insects 201 

NR2F3 SVP 4 1 20/- 2 COUP-TF vertebrates 300 

NR3B4 ERR 5 0 100/100 2 ERR vertebrates 265 

NR4A4 HR38 4 1 -/- 2 NR4A vertebrates 341 

NR5A3 FTZ-F1 4 2 80/- 2 FTZ-F1 crustacea 427 

NR5B1 HR39 3 1 -/- 2 FTZ-F1 arthropoda 342 

NR6A1 HR4 4 3 95/98 3 NR6A vertebrates 359 

Table 2. Summary of insect’s nuclear receptor phylogenies, with emphasis on the 

Mecopterida divergence. The number of aligned proteins is indicated for each group of 

insect. The boostrap values (Neighbour Joining/Maximum Parsimony) associated to the 

Diptera or to the Mecopterida branch are given for each receptor. - : no Mecopterida branch. 
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NR Name Tribolium Apis Anopheles Drosophila mel. 

2D1 HR78 1=X 2.31 30E / 3R 78d1 / 3L 

2E4 DSF 2 1.56 34C / 3R 26a1 / 2L 

6A1 HR4 2 3.31 20B / 2L 2c1 / X 

2E2 TLL 2 4.15 5A / X 100a3 / 3R 

5A3 FTZ-F1 3 1.1 22A / 2L 75d6-7 / 3L 

1E1 E78 3 6.28 25D / 2L 78c1-2 / 3L 

0A3 EG 3 10.6-10.8 38B / 3L 78e5-6 / 3L 

0A2 KNRL 3 10.9 38B / 3L 77c7-d1 / 3L 

0A1 KNI - - - 77e1 / 3L 

2B4 USP 5 9.18 10D / 2R 2c5 / X 

2E6 NR2E6 5 12.30 - - 

4A4 HR38 5 ? 30C / 3R 38c9-10 / 2L 

5B1 HR39 6 6.53 34A / 3R 39a1-2 / 2L 

1F4 HR3 7 1.55 32A / 3R 46f5-6 / 2R 

2E3 HR51 7 1.56 37D / 3R 51f7 / 2R 

3B4 ERR 7 5.26 10D / 2R 66b9 / 3L 

2A4 HNF4 7 9.18  10D / 2R 29e2 / 2L 

1H1 ECR 9 8.36 46D / 3L 42a9-13 / 2R 

1D3 E75 9 11.28 46D / 3L 75a10-b6 / 3L 

2F3 SVP ? 6.45 11B / 2R 87b4 / 3R 

2E5 HR83 ? 10.37 83e4 / 3R 83e4 / 3R 

1J1 HR96 ? 15.20 18C / 2R 96b10-11 / 3R 

Supplementary Table. Chromosomal location of nuclear receptors in insects. 
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Supplementary Figure 1 

 

E75-dmel TTVLCRVCGD KASGFHYGVH SCEGCKGFFR RSIQQKIQYR PCTKNQQCSI LRINRNRCQY CRLKKCIAVG MSRDAVR 
E75-aaeg .......... .......... .......... .......... .......... .......... .......... ....... 
E75-bmor .......... .......... .......... .......... .......... .......... .......... ....... 
E75-tcas .......... .......... .......... .......... .......... .......... .......... ....... 
E75-amel .......... .......... .......... .......... .......... .......... .......... ....... 
 

HR3-dmel EIIPCKVCGD KSSGVHYGVI TCEGCKGFFR RSQSSVVNYQ CPRNKQCVVD RVNRNRCQYC RLQKCLKLGM SRDAVK 
HR3-aaeg .......... .......... .......... .......... .......... .......... .......... ...... 
HR3-bmor .......... .......... .......... ....T..... .....A.... .......... .......... ...... 
HR3-tcas .......... .......... .......... .......... .....N.... .......... ......R... ...... 
HR3-amel .......... .......... .......... .......... .....N.... .......... ......R... ...... 
 

ECR-dmel QEELCLVCGD RASGYHYNAL TCEGCKGFFR RSVTKSAVYC CKFGRACEMD MYMRRKCQEC RLKKCLAVGM RPECVV 
ECR-aaeg .......... .E........ .......... .....N.... ....H..... .......... .......... ...... 
ECR-bmor .......... .......... .......... .....N...I ....H..... .......... .......... .....I 
ECR-tcas .......... .......... .......... ..I..N...Q ..Y.NN..I. .......... ......T... ...... 
ECR-amel .......... .......... .......... ..I..N...Q ..Y.NN..I. .......... ......S... ...... 
 

USP-dmel SKHLCSICGD RASGKHYGVY SCEGCKGFFK RTVRKDLTYA CRENRNCIID KRQRNRCQYC RYQKCLTCGM KREAVQ 
USP-aaeg .......... .......... .......... .......S.. ...DK..T.. .......... ......A... ...... 
USP-bmor .......... .......... .......... .......... ...DK..... .......... ......A... ...... 
USP-tcas .......... .......... .......... .......S.. ...EK..... .......... ......NM.. ...... 
USP-amel .......... .......... .......... .......S.. ...EKS.... .......... ......AM.. ...... 
 

HR4-dmel QPLVCMICED KATGLHYGII TCEGCKGFFK RTVQNRRVYT CVADGTCEIT KAQRNRCQYC RFKKCIEQGM VLQAVR 
HR4-aaeg .......... .......... .......... .......... .......... .......... .......... ...... 
HR4-bmor ..MI...... .......... .......... .......... .....G.... .......... .......... ...... 
HR4-tcas ..MI...... .......... .......... .......... .....N.... .......... .......... ...... 
HR4-amel T.MI...... .......... .......... .......... ...E.G.... .......... .......... ...... 
             -----------------------                 --------------------- 

     z i n c - f i n g e r  1          recognition  helix  z inc-f inger  2        C-terminal extension 
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