384 research outputs found

    New Methodology For Benchmarking Hydrodynamics In Bubble Columns With Intense Internals Using The Radioactive Particle Tracking (RPT) Technique

    Get PDF
    A new methodology for implementing radioactive particle tracking (RPT) in bubble columns with intense vertical rod internals was developed and implemented to investigate the effect of dense internals on hydrodynamics. The methodology utilizes a hybrid of Monte Carlo N-Particle (MCNP) simulation and an automated RPT calibration device to generate a large number of calibration points for accurate reconstruction of the instantaneous positions of radioactive particles using a similarity algorithm. Measurements were conducted in a 6-inch (15.24 cm) Plexiglas column using an air–water system at a superficial gas velocity of 40 cm/s. Vertical Plexiglas rods 0.5 in (1.27 cm) in diameter were used to cover ~25% of the total cross-sectional area of the column to represent the effect of a heat-exchanging tube in industrial Fisher–Tropsch synthesis. The results showed that the internals increased liquid velocity near the center of the column by more than 30%, resulting in enhanced liquid circulation and frequency of liquid eddy movement. In addition, turbulence parameters decreased noticeably when using vertical internals in the bubble column due to a reduction in velocity fluctuations. Reliable data can help validate computational fluid dynamics (CFD) models to predict hydrodynamic parameters at other various conditions

    Tracking the Heavy Metal Contaminants Entrained with the Flow into a Trickle Bed Hydrotreating Reactor Packed with Different Catalyst Shapes using Newly Developed Noninvasive Dynamic Radioactive Particle Tracking

    Get PDF
    A newly developed modified Dynamic Radioactive Particle Tracking system (DRPT) was used to investigate the heavy metal contaminants deposition locations in different catalyst beds, sphere, cylinder, trilobe, and quadrilobed in Trickle Bed Reactors. In the present paper, Kernel Density Estimator (KDE) was used to estimate the probability density distributions of heavy metal contaminants depositions in terms of bed radius height. The result shows that the four cases have similar probability density distribution in terms of radius, while the spherical catalyst has the larger distribution range in terms of bed height. The heavy metal deposition is directly related to the pressure drops along the bed height which indicate the bed porosity and intricate bed structure in catalyst packed beds. Heavy metals have more chance to deposit at higher levels of packed beds with higher pressure drops

    Hybrid metaheuristic for combinatorial optimization based on immune network for optimization and VNS

    Get PDF
    Metaheuristics for optimization based on the immune network theory are often highlighted by being able to maintain the diversity of candidate solutions present in the population, allowing a greater coverage of the search space. This work, however, shows that algorithms derived from the aiNET family for the solution of combinatorial problems may not present an adequate strategy for search space exploration, leading to premature convergence in local minimums. In order to solve this issue, a hybrid metaheuristic called VNS-aiNET is proposed, integrating aspects of the COPT-aiNET algorithm with characteristics of the trajectory metaheuristic Variable Neighborhood Search (VNS), as well as a new fitness function, which makes it possible to escape from local minima and enables it to a greater exploration of the search space. The proposed metaheuristic is evaluated using a scheduling problem widely studied in the literature. The performed experiments show that the proposed hybrid metaheuristic presents a convergence superior to two approaches of the aiNET family and to the reference algorithms of the literature. In contrast, the solutions present in the resulting immunological memory have less diversity when compared to the aiNET family approaches

    Gabapentin for complex regional pain syndrome in Machado-Joseph disease: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Chronic pain is a common problem for patients with Machado-Joseph disease. Most of the chronic pain in Machado-Joseph disease has been reported to be of musculoskeletal origin, but now there seems to be different chronic pain in patients with Machado-Joseph disease.</p> <p>Case presentation</p> <p>A 29-year-old man (Han Chinese, Hoklo) with Machado-Joseph disease experienced severe chronic pain in both feet, cutaneous thermal change, thermal hypersensitivity, focal edema, and sweating and had a history of bone fracture. These symptoms were compatible with a diagnosis of complex regional pain syndrome. After common analgesics failed to relieve his pain, gabapentin was added and titrated to 2000 mg/day (500 mg every six hours) in less than two weeks. This relieved 40% of his pain and led to significant clinical improvement.</p> <p>Conclusions</p> <p>The pathophysiology of complex regional pain syndrome includes peripheral and central sensitizations, the latter of which might be associated with the neurodegeneration in Machado-Joseph disease. In this report, we suggest that gabapentin could inhibit central sensitization as an adjunct for complex regional pain syndrome in patients with Machado-Joseph disease.</p

    Using ILP to Identify Pathway Activation Patterns in Systems Biology

    Get PDF
    We show a logical aggregation method that, combined with propositionalization methods, can construct novel structured biological features from gene expression data. We do this to gain understanding of pathway mechanisms, for instance, those associated with a particular disease. We illustrate this method on the task of distinguishing between two types of lung cancer; Squamous Cell Carcinoma (SCC) and Adenocarcinoma (AC). We identify pathway activation patterns in pathways previously implicated in the development of cancers. Our method identified a model with comparable predictive performance to the winning algorithm of a recent challenge, while providing biologically relevant explanations that may be useful to a biologist

    Antimalarial Activity of Potential Inhibitors of Plasmodium falciparum Lactate Dehydrogenase Enzyme Selected by Docking Studies

    Get PDF
    The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH) has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH) all exhibit ∼90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH) and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole) were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2). The IC50 values for each drug in both tests were similar, were lowest for posaconazole (<5 µM) and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use
    corecore