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ABSTRACT

Metaheuristics for optimization based on the immune network the-

ory are often highlighted by being able to maintain the diversity of

candidate solutions present in the population, allowing a greater

coverage of the search space. This work, however, shows that al-

gorithms derived from the aiNET family for the solution of combi-

natorial problems may not present an adequate strategy for search

space exploration, leading to premature convergence in local min-

imums. In order to solve this issue, a hybrid metaheuristic called

VNS-aiNET is proposed, integrating aspects of the COPT-aiNET

algorithm with characteristics of the trajectory metaheuristic Vari-

able Neighborhood Search (VNS), as well as a new �tness function,

which makes it possible to escape from local minima and enables

it to a greater exploration of the search space. The proposed meta-

heuristic is evaluated using a scheduling problemwidely studied in

the literature. The performed experiments show that the proposed

hybrid metaheuristic presents a convergence superior to two ap-

proaches of the aiNET family and to the reference algorithms of

the literature. In contrast, the solutions present in the resulting

immunological memory have less diversity when compared to the

aiNET family approaches.
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1 INTRODUCTION

Arti�cial Immune Systems (AIS) are intelligent methodologies con-

ceived from theories and observations made on the behavior of the

immunobiological system of vertebrates [9]. The earliest AIS mod-

els were proposed for applications in machine learning and data

mining [7]. From the model proposed by [15], for a dynamic job

sequencing problem, in which the synergy between AIS and opti-

mization is evidenced, numerous approaches have emerged.

Most optimization-oriented AISs were based on the clonal selec-

tion principle, among which we can highlight the CLONALG [10],

B-Cell algorithm [18] and the immune network for optimization

opt-aiNET [8]. This latter makes use of the immune network the-

ory proposed by [17], with some variations, such as opt-aiNetFS

[11] and cob-aiNET [5]. Algorithms based on the immune network

theory are recognized by the simultaneous coverage characteristic

of di�erent regions of the search space. This behavior refers to a

large global optimization capability, an essential feature in meta-

heuristics.

An important aspect to emphasize is that the algorithms of the

aiNET family were originally introduced for the exploration of

continuous search spaces. In these, random or pseudo-random

changes promoted by somatic hypermutation in solution structures

do not tend to lead to major transformations. In contrast, combina-

torial optimization problems tend to be very sensitive to random

changes, and such a change can trigger transformations in the en-

tire structure of the solution, which rarely leads to improvement

without re�nements.
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In view of this peculiarity of combinatorial problems, several

speci�c approaches to these problems have been proposed. Histor-

ically, trajectory methods have been used with great success in the

literature. In general, these methods start from an initial solution

and run through the search space in an iterative way, transform-

ing the solution at each iteration, counting on both strategies that

lead to local optimal solutions, as well as allowing the search to

escape from these local optimal solutions. Considering the global

optimization capabilities of AIS and the local exploitation charac-

teristics of the trajectory methods, [13] proposed a variation of

opt-aiNET for combinatorial optimization, called COPT-aiNET. Al-

ready [14] proposed a hybrid approach, based on the CLONALG

and Variable Neighborhood Search (VNS) [21], for solving a job

sequencing problem in parallel machines. This last approach pre-

sented high performance compared to the algorithms proposed in

the literature for the problem. It is widely known in the litera-

ture that CLONALG exhibits inferior performance over aiNET ap-

proaches (see [8], [9]).

This paper presents a general purpose metaheuristic, based on

characteristics of the immune network, of higher performance for

combinatorial problems. The proposed metaheuristics is based on

the strategies of exploitation of the search space employed by the

aiNET family and characteristics of the trajectory methods found

in [14]. This new metaheuristic, called VNS-aiNET, makes changes

in the internal and external structure of the COPT-aiNET, modify-

ing the behavior of the method, which results in a better search

space coverage, but reduces the multimodal power of the same. In

order to evaluate the performance of the proposedmethodology, it

was applied for solving the problem of makespan minimization in

unrelated parallel machines with sequence-dependent setup times.

The performance and the diversi�cation of the model solutions

are compared to the algorithms COPT-aiNet and COB-aiNet[C]

[4], both of the aiNet family for combinatorial optimization. Com-

parisons with the CLONALG approach proposed by [14] and with

reference approaches in the literature for the set of benchmark in-

stances used are performed.

This paper presents the following organization: Section 2 dis-

cusses some issues related to the COPT-aiNET. In addition, the

general structure of the VNS-aiNET algorithm is introduced. Sec-

tion 3 presents the problem to be dealt for evaluating the proposed

approach, as well as the details of the operators that make up the

proposed algorithm. Section 4 shows the achieved results and a

statistical analysis of them, comparing both the convergence and

the diversity of the solutions. Finally, Section 5 presents the �nal

considerations and perspectives for future work.

2 VNS IMUNNE NETWORK FOR

COMBINATORIAL OPTIMIZATION

The clonal selection principle, proposed by [3], is a process exist-

ing in the adaptive immune system, which is triggered when the

organism identi�es that it has been invaded by a pathogen. The

surface of a pathogen is composed of molecular signatures called

antigens. When a defense cell comes into contact with some anti-

gen, the immune response is activated and clonal expansion of cells

occurs, producing higher concentrations in cells that have higher

a�nity with this antigen. These cells secrete antibodies, if they

are compatible with the antigens, identify them, and the immune

system performs the elimination of them.

The principle of identi�cation of antigens from the clonal ex-

pansion is called positive selection. In the immune network theory

proposed by [17], it is stated that defense cells, in addition to the

identi�cation of antigens, can identify the cells themselves as an

invading pathogen and, consequently, suppress these cells. This

process is called negative selection. A direct consequence is the

autoregulation of the system, since once the immune response has

been able to eliminate the pathogens, most of the cells used in this

response must be discarded by the system, leaving only the cells

that have become part of the immunological memory.

The opt-aiNET algorithm makes use of these concepts to regu-

late the size of the population, ensuring that the solutions are ad-

equately spread through the search space, thus enabling a greater

coverage of the same. For this, the opt-aiNET has a phase of sup-

pression of the cells, performed after maturation of the same by the

clonal expansion. At this phase, the solution with the highest a�n-

ity to the antigen (�tness) is selected within a region of the search

space, and all the cells neighboring a distance (cell a�nity/cell) σs
are eliminated from the population.

The algorithms based on opt-aiNET ([4], [5], [8], [11], [13]) use

a simple �tness function, which considers only the values of the

objective function to be minimized or maximized. This approach

entails limitations to the performance of the algorithm. In case of

restricting population size, solutions in local minima can prevent

cells that walk to promising regions of the search space may be

used in the next generation, since the method gives preference to

solutions already stagnated in local minimum, due the best value

of the objective function. [13] emphasizes that this feature tends

to guarantee multimodality to the method. An alternative to avoid

this problem could be to leave the population without a de�ned

size, being autoregulated by the operator, as initially proposed by

[8]. However, this approach tends to generate di�culties in very

extensive search spaces, in which solutions already stagnant in lo-

cal minima would being continued to participate in the process of

clonal expansion, generating a high computational cost, and, there-

fore, making the method unfeasible.

To solve these problems, it is proposed here that each cell ci ∈

Pu , where Pu is the active population, be increased by a matura-

tion factor mat i
f actor

, which is decremented at each iteration in

which the algorithm identi�es that the solution does not show im-

provement in the objective function. This factor should contribute

negatively to the �tness function, thus helping to avoid the prob-

lems identi�ed above. Cells that reachmaximummaturation factor

are eliminated from Pu , since they do not continue to contribute to

the immune response. The maturation factor also contributes di-

rectly to the number of clones generated from ci in the process of

clonal expansion, in addition to de�ning the degree of mutations

performed in the process of somatic hypermutation. This factor

also contributes negatively about the multimodality characteristic

of the algorithm, making it necessary to perform adjustments, if

one wishes to guarantee it. The maturation factor is related to the

aging mechanism [6], but, unlike this, it is integrated to the �tness

function, thus allowing a faster removal by the suppression opera-

tor of cells trapped at local minimums, in addition to in�uence on
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clonal expansion and in the mutation rate. All these consequences

and speci�c details will be described in the following Section 3.

Another change performed in the COPT-aiNet structure is dur-

ing the clonal expansion process. In COPT-aiNet is proposed that

each cell of the population be subjected to consecutive clonal ex-

pansions and contractions until the immune response stabilizes.

Each expansion is de�ned as the generation of Nci clones, each

clone being subjected to a number of mutations, inversely propor-

tional to its �tness value. Then, the contraction is performed by

selecting the cell, for each cell / clone subset, with the best value

of the objective function. Finally, the �tness value is recalculated

and the process is repeated until the immune response stabilizes.

This approach is a kind of random local search, being a process

similar to that performed by the Simulated Annealing metaheuris-

tic [19], but, unlike it, no worsening solution is accepted. As dis-

cussed earlier, combinatorial optimization problems are very sen-

sitive to random or pseudo-random changes, which hardly result

in immediate solution improvement without some re�nement. In

view of this, characteristics of VNS metaheuristic were introduced

in the clonal expansion phase. In this method, a solution trapped

at a local minimum is disturbed by random movements in one or

more neighborhood structures. A local search is then performed,

systematically increasing the size of the neighborhood structures

exploited. As, in the process of clonal expansion, the mutation

itself already causes disturbances in the clones, it is enough, after-

wards, to carry out the local search process in the de�ned neighbor-

hood structures. Thus, at the end of the local search, the solutions

are already in local minima and there is no need for several expan-

sions and contractions, therefore, only an expansion is performed.

It is worth noting that clones of the same cell can reach completely

distinct regions in the search space. In this way, after the expan-

sion, the re-selection process (contraction) is not performed, as in

the original algorithm. The set formed by the union of the sets

Pc (of population of cloned cells) and Pu (of cells of origin) is for-

warded to the process of suppression in all the generations. Note

that the cells ci ∈ Pu are not submitted to the mutation and local

search. The local search performed in COPT-aiNET, afterm gener-

ations without improvement, is also discarded.

Taking into account the discussed restrictions regarding the al-

gorithm COPT-aiNET and the changes suggested above, an exten-

sion of the immune network for combinatorial optimization, called

VNS-aiNet, is proposed in the Algorithm 1.

3 SCHEDULING AND OPERATORS

In order to evaluate the VNS-aiNET algorithm, a job sequencing

problem in unrelated parallel machines with sequence-dependent

setup-times and goal of minimizing makespan was chosen. This

problem lies in one of the sub-areas of combinatorial optimization

that presents a higher concentration of works, besides presenting a

series of approaches in the literature. The problem is de�ned as: (i)

the assignment of a set N = {1, . . . ,n} with n independent jobs to

a set M = {1, . . . ,m} ofm continuously available unrelated paral-

lel machines; (ii) the sequence processing of jobs on each machine;

and (iii) the completion time of the processing of each job, in or-

der to minimize the maximum completion time of all jobs, named

Algorithm 1 Variable Neighborhood Search Immune Network

(VNS-aiNET)

1: procedure VNS-aiNET
2: u ← 0;
3: Mu ← {};
4: Pu ← Generate nAB cells randomly;
5: while Stop criterion not satis�ed do
6: Evaluate the �tness of cells ci ∈ Pu ;
7: De�ne number of clones nCi for each ci ∈ Pu ;
8: Pc ← clone cells ci ∈ Pu ;
9: Apply mutation to each clone clk ∈ Pc ;
10: Apply local search to each clone clk ∈ Pc ;
11: Pu ← Pu ∪ Pc ;
12: Update factormat i

f actor
of cells ci ∈ Pu ;

13: Ru ← Remove cells from Pu wheremat i
f actor

= 1;

14: Update the �tness of cells ci ∈ Pu ;
15: Pu+1 ← suppress by �tness Pu ;
16: Add nAB − |Pu+1 | new cells to Pu+1;
17: Mu+1 ← suppress by objective function Mu ∪ Ru ;
18: u ← u + 1;
19: end while
20: Mu ← suppress by objective function Mu ∪ Pu ;
21: end procedure

makespan (Cmax ). Each job j involves a single operation to be per-

formed on a single machine i , requiring a processing period that

can not be interrupted, once it has been started, and whose dura-

tion pi j depends on the machine i chosen to process it (situation

that characterizes the machines as unrelated). The transition be-

tween two jobs j and k , adjacent in the job sequence assigned to

the machine i , imposes a setup-time si jk , which depends on the

processing sequence of the jobs, as well as the machine i where

the two jobs are processed.

3.1 Solution representation and memory

initialization

A cell (solution to the scheduling problem) is represented as a vec-

tor of pointers withm positions. The index of each position states

the identi�er of a machine. Each position of the machine vector

points to a linked list, each position represents a job assigned to the

machine and the order of the list shows the processing sequence

on the machine.

The initial population, called P0, is constructed through the ran-

dom generation of nAB solutions. The generator must use a uni-

form probability distribution. An initial immunological memory

M0 empty is also de�ned.

3.2 Antigen cell a�nity

In optimization problems, there is no antigen to be recognized,

but instead an objective function to be optimized. Thus, the cell-

antigen a�nity is usually interpreted as a �tness function exclu-

sively linked to the objective function of the problem itself. As dis-

cussed in Section 2, this approach can lead to some di�culties, that

may result in premature convergence of the algorithm. Consider-

ing these restrictions, the following �tness function is proposed in

this work:

fAд(ci ) = (1 − α)fl ike (ci ) + α fmat (ci ) (1)
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where fl ike (ci ) ∈ [0, 1] is a �tness-like function, shown in Equa-

tion (2). This �rst term considers the quality of the solution in rela-

tion to the other cells of the population. The term fmat (ci ) ∈ [0, 1]

is a function inversely proportional to the number of generations

in which the solution ci did not show any improvement, being able

to be trapped in a region that is not very promising of the search

space or having found a local minimum. This term reduces the

a�nity, discouraging the exploration of the solution by the other

operators, as we will see in the next sections; α is an algorithm

parameter that regulates how priority fmat (ci ) should be about

fl ike (ci ). The �tness-like function fl ike (ci ) is given by:

fl ike (ci ) = 1 −
f (ci ) −minj∈Pu (f (cj ))

maxj∈Pu (f (cj )) −minj∈Pu (f (cj ))
(2)

where f (ci ) is the value of the objective function to be minimized,

given, for the speci�c problem studied, by the makespan of solu-

tion ci ; minj∈Pu (f (cj )) and maxj∈Pu (f (cj )) are, respectively, the

minimum and maximum values of the makespan present in the

population Pu . The function fmat (ci ) is given by:

fmat (ci ) = 1 −mat i
f actor

(3)

For each cell ci ∈ Pu , a maturation factor mat i
f actor

is created.

This factor starts with a value equal to 0 and is incremented by a

mat+ index to each generationwithout improvement, this index be-

ing a parameter of the algorithm. If the maturation factor reaches

the maximum value (mat i
f actor

= 1.0), the cell is removed from

the population. It should be noted that both the factor increment

as the cell removal procedure of the population are discussed in

Section 3.6.

3.3 Cloning

As discussed in Section 2, the cloning process is the �rst step of

clonal expansion, where cells with greater a�nity for the antigen

are stimulated to multiply. One of the most important issues dis-

cussed in this paper is to avoid computational e�ort in solutions

that are in not promising regions of the search space or that are

already in the local minima of their region. Thus, it is proposed

that each cell ci generates a number nCi of distinct clones, directly

proportional to the �tness function, and given by:

nCi = max (1, fAд(ci ) ∗ nCmax ) (4)

where nCmax is a parameter of the algorithm, de�ned as the max-

imum number of clones by cell.

To the extent that a solution fails to show improvement, its a�n-

ity with the antigen, represented by f Aд(ci ), will be reduced, thus

discouraging the cloning and exploitation of this solution, even if

it has a good evaluation of the objective function.

Each clone generated is an identical copy of the origin cell, in-

cluding the value of the maturation factormat i
f actor

.

3.4 Hypermutation

Hypermutation is the process in which cell diversi�cation andmat-

uration takes place. To guarantee both features, COPT-aiNET uses

the mutation rate inversely proportional to the value of the �tness

function. Therefore, cells with low performance are submitted to

high levels of mutation (diversi�cation), whereas solutions with a

high value of the �tness function are submitted to small mutations

to guarantee the maturation of the cells.

Due to the characteristics of the combinatorial problems already

discussed in Section 2, it is proposed to modify the hypermutation

process by adding features of the VNS metaheuristic. In this meta-

heuristic, a perturbation is made in the solution and then a local

search is carried out, systematically increasing the space used by

the search. The disturbance must start as a small noise and, to

the extent that a solution can not escape from a local minimum,

this noise must be high, in order to lead the solution to another

region of the search space. In this sense, the perturbation can be

understood as the proposed somatic hypermutation operator for

the COPT-aiNET, with the only di�erence being that the mutation

level is directly proportional to the maturation level of the cell, as

can be seen in equation:

nmut = round(max (1, e−fmat (ci ))) (5)

ci = Tmut (ci , β ∗ nmut ) (6)

where β is a parameter of the algorithm, representing the maxi-

mum number of possible mutations; Tmut (ci ,nmut ) is a function

performing nmut mutations in the ci cell; and:

round(n) = int(n)+

{
1, random() ≤ n − int(n);

0, otherwise.

This approach allows a solution trapped in a region or in a local

minimum be submitted to a larger change in its structure, allowing

the local search process can mature it and send it to a minimum of

better quality. The functionTmut (ci ,nmut )must be speci�c to the

problem. Considering the problem under study, for each unit of T

one of the transformations described below is randomly selected

and applied to the solution :

• Insertion: given the list of machinesM , obtain machine i , such

that Ci = Cmax , remove from i a randomly chosen job j, insert

j at a random position k of machine w , chosen randomly at M ,

w not necessarily being other than i ;

• Change: given the list of machines M , obtain machine i , such

that Ci = Cmax , randomly select at i a job j, randomly select a

machine w and a job k of w . Then, change k with j. Machine i

is not necessarily di�erent fromw , but j , k case i = w .

3.5 Local Search

In the local search phase one must systematically explore di�erent

neighborhood structures. For this, it is �rst necessary to de�ne

which operations de�ne each structure. In this work, the same 4

structures used in [14] were used, which are described as:

• Internal Exchange: two jobs, j , k , assigned to the same ma-

chine i , where i | Ci = Cmax , have their positions changed;

• Internal Insertion: a job j, assigned tomachine i , where i |Ci =

Cmax , is inserted into a position p of machine i ;

• External Insertion: a job j, assigned tomachine i , where i |Ci =

Cmax , is shifted to a machine w , i , w ;

• External Exchange: The job j, assigned to machine i , where

i | Ci = Cmax , and a job k assigned to machine w , where i , w ,

are exchanges between each other.

For each of the above structures, an exploitation strategy must

be de�ned. The same strategies used in [14] were used. In the
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case of the �rst two structures, a complete descent strategy of the

best-improvement type is performed; for the latter two, a reduction

strategy, already used in [14], is carried out. It is important to em-

phasize that these actions are always executed only on themachine

that de�nes the makespan. This is a characteristic of the problem

under study, which reduces the search space to be exploited, since

only changes in this machine can change the value of the objective

function.

As stated earlier, the VNS de�nes that neighborhood structures

should be explored in a systematic way. For this, [21] proposes to

use, together with the VNS, the local search heuristic VND (Vari-

able Neighbourhood Descent) [21]. In the present work, the same

structure of this heuristic proposed by [14] is used.

3.6 Update of maturation factor and removal

of fully matured cells

Both the cloning and mutation actions described in the previous

sections as well as the suppression action described in the next

section depend directly on the maturation factormat i
f actor

. This

factor indicates the time period in which a given solution ci does

not show improvement in the objective function.

After the process of mutation andmaturation of the cloned cells,

it is expected that they have escaped from local minima in which

the genitor cells are there. Thus, all cloned solutions have their

objective function evaluated and, if they show improvement over

their genitor cell, their maturation factor mat i
f actor

is canceled;

otherwise, it is incremented bymat+ in[0, 1], this being a param-

eter of the algorithm. All genitor cells have the factormat i
f actor

decremented bymat+, since they do not change from previous gen-

eration u − 1.

When a cell reaches the conditionmat i
f actor

≥ 1, it is consid-

ered to have reached the maximummaturation level. Thus, it must

be removed from the active population Pu , since it has reached its

maximum contribution to the immune response. If it is not desired

to maintain the multimodality characteristic of AIS, it is enough to

verify if this cell is the best known solution; if not, it is then dis-

carded. If it is desired tomaintain multimodality, a memory setMu

must be created such that Mu , Pu . Hence, solutions that reach

the maturation threshold in generation u are drawn from Pu and

inserted into Ru ; then the set Su = Mu ∪Ru is subjected to the sup-

pression process, forming Mu+1. This process does not consider

the �tness function proposed here, but rather the value of the ob-

jective function as it is in the opt-aiNET algorithm. At the end of

all generations, one must apply to the set Su = Mu ∪ Pu the same

rule of suppression.

3.7 Suppression

After the clonal expansion process, the immune response is stable.

At this point, an interaction occurs between the cells of population

Pu , in order to regulate the amount of cells in the population. By

the immune network theory, cells with high degree of a�nity be-

tween each other identify as pathogens, marking each other for the

removal by the immune system. The similarity between the struc-

ture of two cells de�nes the a�nity between them. It is observed,

Algorithm 2 Population suppression model

1: procedure Suppression(Pu , σs , nAB)
2: i ← 0;
3: Pu+1 ← {};
4: Insert Best ci ∈ Pu in Pu+1;
5: Sort Pu by function fAд (ci );

6: while |Pu+1 | < nAB and i < |Pu | do
7: ci ← Pu [i ];
8: if Afcell (ci , Pu+1) < (1 − σs ) then
9: Pu+1 ← Pu+1 ∪ ci ;
10: end if
11: i ← i + 1;
12: end while
13: return Pu+1;
14: end procedure

therefore, that solutions in the same subspace of search compete

among themselves for the permanence in the population.

In all approaches of the opt-aiNET family, when two cells are

in the same region of the search space, the cell with the highest

value of the objective function is selected to remain in the popu-

lation. As discussed in Section 2, this approach in populations of

restricted size can lead to the transfer to the next generation of stag-

nant solutions at local minima, wasting computational resources

and making it impossible a larger coverage of the search space. In

order to overcome this issue, in this paper is proposed that, in the

competition between cells belonging to the same subspace, lim-

ited by the radius σs , the cell with the highest value of the �tness

function is selected, in the form as it is presented in equation 1,

in which solutions trapped in local minima have their value penal-

ized. The method thus attempts to ensure a continuous immune

response, prioritizing solutions of good quality, but not trapped.

This approach directly impairs the multimodality capability of the

algorithm, since the best solution found by the method can be lost.

Thus, to get around this, the best solution must always be inserted

in the u + 1 generation population.

The pseudo-code presented in Algorithm 2 de�nes the suppres-

sion operator. The a�nity function Afcel l (ci , Pu+1) among cell ci
and the cells chosen to remain in next generation is given by:

Afcel l (ci , Pu+1) = 1 − min
∀sj ∈Pu+1

d(ci , sj ) (7)

where d(ci , sj ) ∈ [0, 1] is the distance function between cells ci and

sj , whichmust be de�ned according to the structure of the problem

under study. In this work we use the distance function proposed

in [14] and given by:

d(c1, c2) =
1

N

N∑

k=1

φ(k, c1, c2) (8)

where:

φ(k, c1, c2) =





0, If the job k is immediately preceded in c1 and

c2 by the same job j and both are assigned

to the same machine i ;
1, otherwise.

Since the suppression can generate a population of size less than

nAB, nAB − |Pu+1 | new cells are generated randomly at the end of

the suppression phase, which are inserted into the active popula-

tion Pu+1 and contribute to the diversi�cation of the solutions in

the population.
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4 RESULTS

The experiments performed in this paper are conducted using a set

of 1350 instances, presented in [1] and available in [22]. This set

of instances are divided into 3 subsets. In the �rst subset, called

Proc_Dominant , the processing times are uniformly distributed in

the interval [125, 175], while the setup times follow the distribu-

tion [50, 100], i.e. the processing times are always greater than the

setup times. In the second subset, the distributions are inverted,

with the setup times being greater than the processing times. This

subset is named Prep_Dominant . In the third subset (Balanced)

there is a balance between processing times and setup times, both

distributed in the interval [50, 100]. Each subset has 450 instances,

con�guredwithn = {20, 40, 60, 80, 100, 120} andm = {4, 6, 8, 10, 12},

forming 30 groups of di�erent dimensions (n×m), with 15 instances

in each group.

In order to verify the performance of the VNS-aiNET, it is pro-

posed to compare this new algorithm to the COPT-aiNET [23] and

its variation COB-aiNET[C] [4]. Bothwere implemented following

all the available guidelines, respectively, in [13] and [4]. As the goal

is to compare the overall performance of metaheuristics, the local

search operator proposed by [14] is used in both algorithms. In ad-

dition, the VNS-aiNET algorithm is compared with the Clonal-SL

[14], ACO [2] and HABC [20] metaheuristics, which are presented

as references for the set of instances evaluated here. The results of

these algorithms were made available by the authors.

All the implemented algorithms in the present work were devel-

oped in Java language, with JDK 1.8. The experiments were run in

an environment with Intel i5-2450M processor with 2.5 GHz, 4GB

of RAM and Linux environment Ubuntu 16.04. In [12] it is shown

that the number of distinct solutions in unrelated parallelmachines

problems is given by (n +m − 1)!/(m − 1)!. It can be observed that

the dimension of the search space is directly proportional to n and

inversely proportional tom. Thus, the stopping criterion was es-

tablished in terms of the execution time in seconds and is de�ned

by the expression:

Timeinstance =

n

m
(9)

Each of the algorithms studied in this work was applied 5 times

to each instance. For each result obtained, the relative percent-

age deviation (RPD) between the solution’s makespan found by a

given algorithm (methodsol ) and the lower bound (lowerinstance )

de�ned by [1] is calculated for each instance of the benchmark set.

The RDP calculation is done in the form:

RPDinstance =
methodsol−lowerinstance

lowerinstance
(10)

Table 3 shows the means of the relative percentage deviations for

each subset of instances of the same dimensions, that is, instances

with the same values ofm and n.

In order to verify if there is statistical di�erence between the

general performance of the algorithms in relation to the conver-

gence, a one-way ANOVA is performed, this being 6 levels, which

are the evaluated algorithms. An experimental design with blocks

was used, so that the groupsm vs. n are blocked, since they can in-

�uence the overall average. The value RDPaveraдe of the group

m vs. n presented in Table 3 is considered as the value of the

block. The residuals assumptions of normality, independence and

Table 1: Parameters for VNS-aiNET algorithm

Parameter

Cell numbers in population (nAB) 10
Weight of fmat in �tness function (α ) 0.468
Max. number of clones per cells (nCmax ) 6
Maturity factor (mat+) 0.035
Mutation parameter (β ) 2
Suppression threshold (σs ) 0.072

Table 2: Parameters for COPT-aiNET and COB-aiNET

Parameter aiNET

COPT COB

Initial number of cells (nAB) 15 25
Max. number of cells (maxAB) 50 40
Max. number of clones per cells (nCmax ) 6 9
Number of new antibodies (ncels ) 6 –
Initial concentration (C0) – 0.62
Number of iterations between consecutive local searches
(l sf r eq )

7 3

Mutation parameter (β ) 1 –
Initial mutation parameter (βi ) – 0.49
Final mutation parameter (βf ) – 0.08
Suppression threshold (σs ) 0.149 0.10

homoscedasticity are veri�ed. A con�dence level of 95% (α = 0.05)

is used.

4.1 Parameters

The de�nition of the parameters of ametaheuristic is one of the fac-

tors of greater in�uence on the quality of the results. In order to

avoid that the parameters adversely a�ect on the results obtained

by the algorithms implemented in this work, both the VNS-aiNET

algorithm as the COPT-aiNET and COB-aiNET algorithms have

their parameters de�ned by the iRace framework [16]. Each algo-

rithm used 10,000 simulations, and each simulation consumed the

maximum time de�ned by Equation (9). The parameters obtained

by the iRace framework for each algorithm are presented in the

tables 1 and 2.

4.2 Results for convergence

When analyzing Table 3, it is clear that the VNS-aiNET algorithm

presents an average superior performance in relation to the COPT-

aiNET and COB-aiNET algorithms. Even for low-dimensional in-

stance groups (n = 20), VNS-aiNET shows better performance. It

can also be observed that, as the dimensionality of the problem

is increased, the performance of the VNS-aiNET algorithm is also

improved against the performance of the COPT-aiNET and COB-

aiNET algorithms. Although the COB-aiNET presents a slight im-

provement over COPT-aiNET, both present a quite inferior perfor-

mance, in all the instance groups, to the reference approaches in

the literature. Comparing the VNS-aiNET to the reference meth-

ods, we can see that it presents an average performance superior to

these in all groups of instances. The HABCmetaheuristic presents

performance equal to the VNS-aiNET only in sets with low dimen-

sionality (n = 20).

In spite of the performance presented in Table 3, when looking

at Figure 1 it is not possible to state that the apparent better per-

formance achieved by VNS-aiNET is statistically signi�cant. If we

analyze the ANOVA, present in Table 4, we can see that at least
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Table 3: Average RDP per machine instance group (m) in re-

lation to jobs (n)

m n aiNET ACO HABC Clonal

VNS COPT COB

4 20 6.2 7.4 7.1 6.5 6.2 6.3
40 3.5 6.2 5.9 4.4 3.8 4.2
60 2.6 5.9 5.6 3.4 3.0 3.2
80 2.2 5.8 5.6 3.0 2.8 2.8
100 2.0 5.7 5.5 2.6 2.5 2.6
120 1.9 5.6 5.5 2.3 2.4 2.4

6 20 22.1 22.5 22.2 22.2 22.1 22.2
40 7.3 10.1 9.9 8.9 7.6 7.9
60 3.6 7.5 7.1 5.4 4.2 4.2
80 4.9 8.3 7.9 6.1 5.5 5.5
100 3.3 7.3 6.9 4.6 3.9 3.8
120 2.7 7.1 6.8 3.4 3.2 3.1

8 20 25.2 26.1 25.8 25.9 25.2 25.4
40 5.7 9.4 9.0 7.2 5.9 6.2
60 8.5 11.5 11.2 9.8 8.9 9.0
80 3.7 8.2 7.9 5.5 4.3 4.3
100 5.2 8.9 8.6 7.1 5.9 5.6
120 3.1 8.0 7.7 4.4 3.7 3.6

10 20 11.0 12.9 12.6 12.6 11.0 11.2
40 6.5 10.5 10.0 9.9 6.8 6.8
60 5.0 9.5 9.1 7.0 5.5 5.5
80 4.3 9.0 8.7 5.8 4.9 4.8
100 3.9 8.8 8.5 5.9 4.5 4.4
120 3.6 8.6 8.3 5.3 4.4 4.1

12 20 28.9 31.0 30.6 30.2 28.9 29.2
40 23.1 25.2 24.8 24.6 23.1 23.2
60 5.5 10.2 9.8 7.8 6.0 5.9
80 8.2 12.0 11.8 10.0 8.8 8.4
100 9.5 12.6 12.4 10.8 10.3 9.7
120 4.0 9.3 8.9 5.5 4.7 4.4

Total 7.6 11.0 10.7 8.9 8.0 8.0

Figure 1: Boxplot for total average RDP of each algorithm.

one of the algorithms presents a mean convergence statistically

di�erent from the others (p − value < 0.05). When observing

Figure 2, which presents a Tukey HSD test, with 95% con�dence

(a = 0.05), it is possible to conclude that the performance achieved

by the VNS-aiNET algorithm is statistically signi�cant compared

to the achieved by the COPT-aiNET and COB-aiNET algorithms.

Comparing the VNS-aiNET with the approaches proposed in the

literature, it is noticed that this algorithm clearly presents a supe-

rior performance against the ACO. When compared to Clonal-SL

and to HABC, the VNS-aiNET presents a statistically superior per-

formance to both, although the margin of error is very close to the

limit.

Table 4: ANOVA with α = 0.05 for total average RDP

Df Sum Sq Mean Sq F value Pr(>F)

Algorithm 5 335 66.98 170.3 <2e-16
MxN 29 8368 288.56 733.6 <2e-16
Residuals 145 57 0.39

Figure 2: Tukey HSD for total average with con�dence

level 95%.

4.3 Results: Diversity of Solutions

Multimodality is an important feature of algorithms based on the

immune network theory. As discussed in Section 2, the proposed

�tness function for VNS-aiNET results in changes in the behavior

of the algorithm, especially in the suppression process, thus having

potential impacts on components that aid to the multimodality of

VNS-aiNET. In Section 3.6 an alternative is proposed for the case

where it is desired that the multimodality of the method be pre-

served. To verify the e�ciency of this alternative, a boxplot graph

is shown in Figure 3, with the mean distance between the 10 best

solutions present in memory Mu , resulting from the VNS-aiNET,

COPT-aiNET and COB-aiNET methods. It can be clearly seen that

the proposed changes to the VNS-aiNET directly led to the diver-

sity of the solutions present in Mu , with an average of 80% simi-

larity between the solutions. On the other hand, COPT-aiNET and

COB-aiNET present average similarity between solutions of less

than 10%.

Figure 4 presents the average quality of the 10 best solutions in

memory, in relation to the best memory solution. It can be noticed

that the VNS-aiNET is able to keep in memory solutions of higher

quality, in relation to the best solution found by the method itself.

This is particularly interesting because, despite of losing in diver-

sity of solutions, the VNS-aiNET maintains a more homogeneous

population in relation to the objective function value, averaging a

deviation of 0.2% of the best solution found by the method. The

COPT-aiNET and COB-aiNET algorithms present mean deviation

of 1.2% and 0.8%, respectively.

5 CONCLUSIONS

In this work the immune network for combinatorial optimization

COPT-aiNET is evaluated, identifying that its global optimization

power is not fully exploited by the way in which the solutions are
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Figure 3: Boxplot showing the diversity among the 10 solu-

tions with the lowest makespan present in memory.

Figure 4: Boxplot for RDP of the average makespan of the

10 best solutions regarding the best solution.

explored and selected for the next generation. To correct this limi-

tation, a new hybrid metaheuristic called VNS-aiNET is proposed,

which integrates the VNS trajectorymethodwith the COPT-aiNET

algorithm. Alterations in the cell/antigen a�nity function are also

proposed, allowing new regions of the search space to be priori-

tized and exploited, when the solutions present in the immunolog-

ical memory are trapped in local minima of their search subspace.

The proposed hybrid metaheuristic is evaluated in a job sched-

uling problem, which have been a relevant problem in last few

years in combinatorial optimization literature. The results indi-

cate that the proposed metaheuristics presented signi�cant perfor-

mance against the COPT-aiNET and COB-aiNET[C] approaches,

both based on the immune network theory for combinatorial prob-

lems. The VNS-aiNET algorithm also presented slightly better re-

sults than the ACO, HABC and Clonal-SL approaches, algorithms

known in the literature as references for the job scheduling prob-

lem under study. The experiments carried out indicated that the

changes made in VNS-aiNET, for its better performance, add neg-

atively impact in the multimodality of the method, showing lower

diversity in the resulting memory solutions when compared to

COPT-aiNET and COB-aiNET[C]. However, the solutions in the

memory present a very reduced percentage deviation in relation

to the best solution of the memory, when compared to the COPT-

aiNET and COB-aiNET [C] algorithms.

Despite of the good performance presented, it is necessary that

the VNS-aiNET be applied to other combinatorial problems and

compared to other metaheuristics, in order to verify its true e�-

ciency and its generalization capacity.
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