50 research outputs found
Linkage analysis of high myopia susceptibility locus in 26 families
Purpose: We conducted a linkage analysis in high myopia families to replicate suggestive results from chromosome 7q36 using a model of autosomal dominant inheritance and genetic heterogeneity. We also performed a genome-wide scan to identify novel loci. Methods: Twenty-six families, with at least two high-myopic subjects (ie. refractive value in the less affected eye of -5 diopters) in each family, were included. Phenotypic examination included standard autorefractometry, ultrasonographic eye length measurement, and clinical confirmation of the non-syndromic character of the refractive disorder. Nine families were collected de novo including 136 available members of whom 34 were highly myopic subjects. Twenty new subjects were added in 5 of the 17 remaining families. A total of 233 subjects were submitted to a genome scan using ABI linkage mapping set LMSv2-MD-10, additional markers in all regions where preliminary LOD scores were greater than 1.5 were used. Multipoint parametric and non-parametric analyses were conducted with the software packages Genehunter 2.0 and Merlin 1.0.1. Two autosomal recessive, two autosomal dominant, and four autosomal additive models were used in the parametric linkage analyses. Results: No linkage was found using the subset of nine newly collected families. Study of the entire population of 26 families with a parametric model did not yield a significant LOD score (>3), even for the previously suggestive locus on 7q36. A non-parametric model demonstrated significant linkage to chromosome 7p15 in the entire population (Z-NPL=4.07, p=0.00002). The interval is 7.81 centiMorgans (cM) between markers D7S2458 and D7S2515. Conclusions: The significant interval reported here needs confirmation in other cohorts. Among possible susceptibility genes in the interval, certain candidates are likely to be involved in eye growth and development
G1 phase arrest by the phosphatidylinositol 3-kinase inhibitor LY 294002 is correlated to up-regulation of p27Kip1 and inhibition of G1 CDKs in choroidal melanoma cells
AbstractWe have investigated the effect of the flavonoid derivative LY 294002, a potent and selective phosphatidylinositol 3-kinase inhibitor, on cell cycle progression in human choroidal melanoma cells. We demonstrate that LY 294002 induces a specific G1 block in asynchronously growing cells leading to an almost complete inhibition of cell proliferation after three days of treatment. When melanoma cells are released from a nocodazole-induced G2/M block, LY 294002 is shown to delay and greatly restrain the G1/S transition. The inhibitor is able to exert its action as long as it is added during the G1 progression and before the cells enter in S phase. We report that the LY 294002-induced G1 arrest is closely correlated to inhibition of CDK4 and CDK2 activities leading to the impairment of pRb phosphorylation which normally occurs during G1 progression. While the inhibition of CDK4 may be attributed at least in part to the decline in CDK4 protein level, CDK2 activity reduction is rather due to the up-regulation of the CDK inhibitor p27Kip1 and to its increased association to CDK2
Quality of DNA Extracted from Mouthwashes
Background
A cost effective, safe and efficient method of obtaining DNA samples is essential in large scale genetic analyses. Buccal cells are an attractive source of DNA, as their collection is non-invasive and can be carried out by mail. However, little attention has been given to the quality of DNA extracted from mouthwashes.
Methodology
Mouthwash-derived DNA was extracted from 500 subjects participating in a genetic study of high myopia. DNA quality was investigated using two standard techniques: agarose gel electrophoresis and quantitative polymerase chain reaction (qPCR).
Principal Findings
Whereas the majority of mouthwash-derived DNA samples showed a single band of high molecular weight DNA by gel electrophoresis, 8.9% (95% CI: 7.1–10.7%) of samples contained only a smear of low-to-medium molecular weight, degraded DNA. The odds of DNA degradation in a subject's second mouthwash sample, given degradation of the first, was significantly greater than one (OR = 3.13; 95% CI: 1.22–7.39; Fisher's test P = 0.009), suggesting that DNA degradation was at least partially a subject-specific phenomenon. Approximately 12.4% (95% CI: 10.4–14.4%) of mouthwash-derived DNA failed to PCR amplify efficiently (using an ~200 bp microsatellite marker). However, we found there was no significant difference in amplification success rate between DNA samples judged to be degraded or non-degraded by gel electrophoresis (Fisher's test P = 0.5).
Conclusions
This study demonstrated that DNA degradation affects a significant minority of saline mouthwashes, and that the phenomenon is partially subject-specific. Whilst the level of degradation did not significantly prevent successful amplification of short PCR fragments, previous studies suggest that such DNA degradation would compromise more demanding applications
The xenobiotic-metabolizing enzymes arylamine N-acetyltransferases in human lens epithelial cells: inactivation by cellular oxidants and UVB-induced oxidative stress
The abbreviations used are: NAT, arylamine N-acetyltransferase; XME, xenobiotic-metabolizing enzymes; SIN1, 3-morpholinosydnonimine N-ethylcarbamide MOL 9738 3 ABSTRACT The human arylamine N-acetyltransferases NAT1 and NAT2 are important xenobioticmetabolizing enzymes involved in the detoxification and metabolic activation of numerous drugs and chemicals. NAT activity depends on genetic polymorphisms and on environmental factors. It has been shown that low NAT-acetylation activity could increase the risk of age-dependent cataract suggesting that NAT detoxification function may be important for lens cells homeostasis. We report here that the NAT acetylation pathway may occur in human lens epithelial (HLE) cells. Functional NAT1 enzyme was readily detected in HLE cells by RT-PCR, western-blotting and enzyme activity assays. NAT2 mRNA and enzymic activity was also detected. We investigated whether oxidants, known to be produced in HLE cells during oxidative stresses and involved in age-dependent cataract formation, decreased endogenous NAT1 and NAT2 activity. The exposure of HLE cells to peroxynitrite led to the dose-dependent irreversible inactivation of both NAT isoforms. Exposing HLE cells to continuously generated H 2 O 2 gave a dose-dependent inactivation of NAT1 and NAT2, reversible on addition of high concentrations of reducing agents. UVB irradiation also induced the reversible dose-dependent inactivation of endogenous NAT1 and NAT2, reversible on addition of reducing agents. Thus, our data suggest that functional NAT1 and NAT2 are present in HLE cells and may be impaired by oxidants produced during oxidative and photo-oxidative stresses. Oxidative-dependent inhibition of NATs in these cells may increase exposure of lens to the harmful effects of toxic chemicals which could contribute to cataractogenesis over time
Phase I trial of recombinant human nerve growth factor for neurotrophic keratitis
Neurotrophic keratitis/keratopathy (NK), a rare degenerative corneal disease, lacks effective pharmacologic therapies.1 Because NK pathology involves trigeminal nerve damage and loss of corneal innervation, nerve growth factor (NGF) is surmised to promote healing of NK.2 Preliminary studies with murine NGF demonstrated efficacy for treating corneal neurotrophic ulcers;3 however, the complex tertiary structure of NGF has complicated the production of recombinant human NGF (rhNGF) suitable for clinical development. To this end, we developed an Escherichia coli–derived rhNGF formulation that demonstrated to be well tolerated and safe for topical ophthalmic use in a phase I study in healthy volunteers.4 We report phase I results of topical rhNGF for patients with moderate-to-severe NK
Phase 2 randomized, double-masked, vehicle-controlled trial of recombinant human nerve growth factor for neurotrophic keratitis
Purpose: To evaluate the safety and efficacy of topical recombinant human nerve growth factor (rhNGF) for treating moderate-to-severe neurotrophic keratitis (NK), a rare degenerative corneal disease resulting from impaired corneal innervation. Design: Phase 2 multicenter, randomized, double-masked, vehicle-controlled trial. Participants: Patients with stage 2 (moderate) or stage 3 (severe) NK in 1 eye. Methods: The REPARO phase 2 study assessed safety and efficacy in 156 patients randomized 1:1:1 to rhNGF 10 μg/ml, 20 μg/ml, or vehicle. Treatment was administered 6 drops per day for 8 weeks. Patients then entered a 48- or 56-week follow-up period. Safety was assessed in all patients who received study treatment, whereas efficacy was by intention to treat. Main Outcome Measures: Corneal healing (defined as <0.5-mm maximum diameter of fluorescein staining in the lesion area) was assessed by masked central readers at week 4 (primary efficacy end point) and week 8 (key secondary end point) of controlled treatment. Corneal healing was reassessed post hoc by masked central readers using a more conservative measure (0-mm staining in the lesion area and no other persistent staining). Results: At week 4 (primary end point), 19.6% of vehicle-treated patients achieved corneal healing (<0.5-mm lesion staining) versus 54.9% receiving rhNGF 10 μg/ml (+35.3%; 97.06% confidence interval [CI], 15.88–54.71; P < 0.001) and 58.0% receiving rhNGF 20 μg/ml (+38.4%; 97.06% CI, 18.96–57.83; P < 0.001). At week 8 (key secondary end point), 43.1% of vehicle-treated patients achieved less than 0.5-mm lesion staining versus 74.5% receiving rhNGF 10 μg/ml (+31.4%; 97.06% CI, 11.25–51.49; P = 0.001) and 74.0% receiving rhNGF 20 μg/ml (+30.9%; 97.06% CI, 10.60–51.13; P = 0.002). Post hoc analysis of corneal healing by the more conservative measure (0-mm lesion staining and no other persistent staining) maintained statistically significant differences between rhNGF and vehicle at weeks 4 and 8. More than 96% of patients who healed after controlled rhNGF treatment remained recurrence free during follow-up. Treatment with rhNGF was well tolerated; adverse effects were mostly local, mild, and transient. Conclusions: Topical rhNGF is safe and more effective than vehicle in promoting healing of moderate-to-severe NK
Corneal Transduction by Intra-Stromal Injection of AAV Vectors In Vivo in the Mouse and Ex Vivo in Human Explants
The cornea is a transparent, avascular tissue that acts as the major refractive surface of the eye. Corneal transparency, assured by the inner stroma, is vital for this role. Disruption in stromal transparency can occur in some inherited or acquired diseases. As a consequence, light entering the eye is blocked or distorted, leading to decreased visual acuity. Possible treatment for restoring transparency could be via viral-based gene therapy. The stroma is particularly amenable to this strategy due to its immunoprivileged nature and low turnover rate. We assayed the potential of AAV vectors to transduce keratocytes following intra-stromal injection in vivo in the mouse cornea and ex vivo in human explants. In murine and human corneas, we transduced the entire stroma using a single injection, preferentially targeted keratocytes and achieved long-term gene transfer (up to 17 months in vivo in mice). Of the serotypes tested, AAV2/8 was the most promising for gene transfer in both mouse and man. Furthermore, transgene expression could be transiently increased following aggression to the cornea
A novel antiangiogenic and vascular normalization therapy targeted against human CD160 receptor
A monoclonal anti-CD160 antibody inhibits the growth of new vessels in pathological ocular and tumor neoangiogenesis but not in healthy tissues
Etude clinique évaluant l'innocuité et l'efficacité d'une lentille intraoculaire photoajustable chez les patients bénéficiant d'une extraction extracapsulaire de cataracte, résultats préliminaires
Nous présentons à partir d'une série de 20 patients les résultats préliminaires d'un essai clinique prospectif évaluant chez 390 patients innocuité et efficacité d'une lentille intraoculaire pseudophaque dite LAL qui est ajustable par la lumière ultraviolette. Le photoajustement de la puissance de la LAL est suivi d'une procédure de photoblocage. Nos résultats à l'issue du suivi sont en faveur de l'innocuité et de l'efficacité de la LAL en termes de taux d'événements indésirables graves et de meilleure acuité visuelle corrigée supérieure à 20/40 à l'issue du suivi. Par ailleurs, la précision de l'ajustement des amétropies non cylindriques est satisfaisante. En revanche, la stabilité réfractive ne l'est pas et un deuxième blocage est donc proposé pour les patients prochainement inclus. Pour finir, concept et premiers résultats sont donc intéressants mais seule la complétion de l'étude nous fournira les conclusions définitives.TOULOUSE3-BU Santé-Centrale (315552105) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF
Photothérapie dynamique des néovaisseaux cornéens (étude expérimentale chez le lapin)
TOULOUSE3-BU Santé-Centrale (315552105) / SudocTOULOUSE3-BU Santé-Allées (315552109) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF