2,032 research outputs found
Present Bounds on New Neutral Vector Resonances from Electroweak Gauge Boson Pair Production at the LHC
Several extensions of the Standard Model predict the existence of new neutral
spin-1 resonances associated to the electroweak symmetry breaking sector. Using
the data from ATLAS (with integrated luminosity of L=1.02 fb^{-1}) and CMS
(with integrated luminosity of L=1.55 fb^{-1}) on the production of W+W- pairs
through the process pp -> l^+ l^{\prime -} \sla{E}_T, we place model
independent bounds on these new vector resonances masses, couplings and widths.
Our analyses show that the present data excludes new neutral vector resonances
with masses up to 1-2.3 TeV depending on their couplings and widths. We also
demonstrate how to extend our analysis framework to different models working a
specific example.Comment: 10 pages, 6 figure
Enhanced time response of 1-in. LaBr3(Ce) crystals by leading edge and constant fraction techniques
We have characterized in depth the time response of three detectors equipped
with cylindrical LaBr (Ce) crystals with dimensions of 1-in. in height
and 1-in. in diameter, and having nominal Ce doping concentration of 5%, 8% and
10%. Measurements were performed at Co and Na {\gamma}-ray
energies against a fast BaF reference detector. The time resolution was
optimized by the choice of the photomultiplier bias voltage and the fine tuning
of the parameters of the constant fraction discriminator, namely the
zero-crossing and the external delay. We report here on the optimal time
resolution of the three crystals. It is observed that timing properties are
influenced by the amount of Ce doping and the crystal homogeneity. For the
crystal with 8% of Ce doping the use of the ORTEC 935 CFD at very shorts delays
in addition to the Hamamatsu R9779 PMT has made it possible to improve the
LaBr(Ce) time resolution from the best literature value at 60Co photon
energies to below 100 ps.Comment: Article submitted to Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipmen
Constraining anomalous Higgs interactions
The recently announced Higgs discovery marks the dawn of the direct probing
of the electroweak symmetry breaking sector. Sorting out the dynamics
responsible for electroweak symmetry breaking now requires probing the Higgs
interactions and searching for additional states connected to this sector. In
this work we analyze the constraints on Higgs couplings to the standard model
gauge bosons using the available data from Tevatron and LHC. We work in a
model--independent framework expressing the departure of the Higgs couplings to
gauge bosons by dimension--six operators. This allows for independent
modifications of its couplings to gluons, photons and weak gauge bosons while
still preserving the Standard Model (SM) gauge invariance. Our results indicate
that best overall agreement with data is obtained if the cross section of Higgs
production via gluon fusion is suppressed with respect to its SM value and the
Higgs branching ratio into two photons is enhanced, while keeping the
production and decays associated to couplings to weak gauge bosons close to
their SM prediction.Comment: v3: Added acknowledgment to FP7 ITN INVISIBLES (Marie Curie Actions
PITN-GA-2011-289442). Nothing else changed with respect to v
CP violation with a dynamical Higgs
We determine the complete set of independent gauge and gauge-Higgs CP-odd
effective operators for the generic case of a dynamical Higgs, up to four
derivatives in the chiral expansion. The relation with the linear basis of
dimension six CP-odd operators is clarified. Phenomenological applications
include bounds inferred from electric dipole moment limits, and from present
and future collider data on triple gauge coupling measurements and Higgs
signals.Comment: 41 pages, 3 figures; V2: citations added, typos corrected, version
published on JHE
Disentangling a dynamical Higgs
The pattern of deviations from Standard Model predictions and couplings is
different for theories of new physics based on a non-linear realization of the
gauge symmetry breaking and those assuming a linear
realization. We clarify this issue in a model-independent way via its effective
Lagrangian formulation in the presence of a light Higgs particle, up to first
order in the expansions: dimension-six operators for the linear expansion and
four derivatives for the non-linear one. Complete sets of pure gauge and
gauge-Higgs operators are considered, implementing the renormalization
procedure and deriving the Feynman rules for the non-linear expansion. We
establish the theoretical relation and the differences in physics impact
between the two expansions. Promising discriminating signals include the
decorrelation in the non-linear case of signals correlated in the linear one:
some pure gauge versus gauge-Higgs couplings and also between couplings with
the same number of Higgs legs. Furthermore, anomalous signals expected at first
order in the non-linear realization may appear only at higher orders of the
linear one, and vice versa. We analyze in detail the impact of both type of
discriminating signals on LHC physics.Comment: Version published in JHE
Simple metal-free oxidative cleavage of 1,2-diols
Cleavage of 1,2-diols is easily carried out under mild conditions with the Oxone/KBr (or Oxone/NaCl) method in either acetonitrile/water or tert-butanol/water medium at room temperature. This procedure is highly efficient for the cleavage of dihydroxyfatty esters and acids. The reaction takes place through a double oxidation of the 1,2-diol, leading to the 1,2-diketone that undergoes a Baeyer-Villiger oxidation, with a final hydrolysis of the generated anhydride. The application to other diols, including simple internal and terminal diols, is also possible, but the nature of the diol substrate conditions the optimal halide/solvent system, given that important differences in reactivity are observed. These differences are ascribed to the change in the rate limiting step depending on the substrate/halide/solvent combinatio
Synthesis of hydroxyfatty esters by sequential epoxidation-hydrogenolysis: Solvent effects
The tandem/sequential combination of epoxidation and hydrogenolysis for unsaturated fatty esters is not straightforward, due to incompatibility problems with the impurities present or generated in the used solvents. The chlorinated impurities in alpha, alpha, alpha-trifluorotoluene leads to the formation of important amounts of chlorohydrins by HCl formation in the hydrogenolysis step. The use of trifluoroethanol (TFE) in the epoxidation step produces trifluoroacetic acid traces by oxidation, responsible for the opening of the epoxide with water and TFE. The solvent of choice was finally isobutyl acetate, which gathers the required physicochemical properties, with 85 % yield of hydroxystearates from methyl oleate in a sequential process
- …