160 research outputs found

    Pisgah Lava Cave Communication Test: Science Case Study for the Networked Constellations Initiative

    Get PDF
    As part of the science case study for the Networked Constellations initiative, a team of JPL scientists explore the possibility of a mission to study the lava caves on Mars. Natural caves on Mars and the Moon present a unique opportunity to learn about the planetary geology and to provide a shelter for human explorers. Due to power and communication challenges, a network of assets has significant advantages over a single asset sent inside a cave. However, communication between the assets and the data downlink present significant difficulties due to the presence of rough walls, boulders, and other obstacles with unknown dielectric constant inside a typical cave, disturbing the propagation of the radio waves. A detailed study is needed to establish the limitations of the current communication technologies and to develop requirements for the new communication technology applicable to the cave environment. On May 4 of 2017, Konstantin Belov, Doug Ellison, and Abby Fraeman visited a lava cave in Pisgah, CA. The purpose of the visit was to build a 3D map of the cave, which could be used to create a model of radio wave propagation, and to conduct a series of communication tests using off-the-shelf equipment to verify the in-cave communication challenges. This experiment should be considered as a simple 'proof of concept' and is the subject of this report

    W.M. Keck Institute for Space Studies Postdoctoral Fellowship Final Report

    Get PDF

    Untangling Source-To-Sink Geochemical Signals in a ~3.5 Ga Martian Lake: Sedimentology and Geochemistry of the Murray Formation

    Get PDF
    Sedimentary rocks are historical archives of planetary surface processes; their grains, textures, and chemistry integrate the effects of source terrains, paleoclimatic conditions, weathering and transport processes, authigenic mineral precipitation, and diagenesis, which records groundwater chemistry through time. Source to Sink basin analysis seeks to constrain the influence of each of these different signals through sedimentary and geochemical analyses. Here, we use Mars Science Laboratory (MSL) Curiosity rover images and geochemical and mineralogical data from a traverse across a portion of the Murray formationthe lowermost unit exposed in the Gale crater central moundto begin to constrain the aspects of the source to sink system that formed this Martian mudstone between 3.7 and 3.2 Ga

    Internal Characteristics of Phobos and Deimos from Spectral Properties and Density: Relationship to Landforms and Comparison with Asteroids

    Get PDF
    Compositional interpretations of new spectral measurements of Phobos and Deimos from Mars Express/OMEGA and MRO/CRISM and density measurements from encounters by multiple spacecraft support refined estimates of the moons' porosity and internal structure. Phobos' estimated macroporosity of 12-20% is consistent with a fractured but coherent interior; Deimos' estimated macroporosity of 23-44% is more consistent with a loosely consolidated interior. These internal differences are reflected in differences in surface morphology: Phobos exhibits a globally coherent pattern of grooves, whereas Deimos has a surface dominated instead by fragmental debris. Comparison with other asteroids .110 km in diameter shows that this correspondence between landforms and inferred internal structure is part of a pervasive pattern: asteroids interpreted to have coherent interiors exhibit pervasive, organized ridge or groove systems, whereas loosely consolidated asteroids have landforms dominated by fragmental debris and/or retain craters >1.3 body radii in diameter suggesting a porous, compressible interior

    Solar Power System Design for the Solar Probe+ Mission

    Get PDF
    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity

    Using VSWIR Microimaging Spectroscopy to Explore the Mineralogical Diversity of HED Meteorites

    Get PDF
    We use VSWIR microimaging spectroscopy to survey the spectral diversity of HED meteorites at 80-μm/pixel spatial scale. Our goal in this work is both to explore the emerging capabilities of microimaging VSWIR spectroscopy and to contribute to understanding the petrologic diversity of the HED suite and the evolution of Vesta. Using a combination of manual and automated hyperspectral classification techniques, we identify four major classes of materials based on VSWIR absorptions that include pyroxene, olivine, Fe-bearing feldspars, and glass-bearing/featureless materials. Results show microimaging spectroscopy is an effective method for rapidly and non-destructively characterizing small compositional variations of meteorite samples and for locating rare phases for possible follow-up investigation. Future work will include incorporating SEM/EDS results to quantify sources of spectral variability and placing observations within a broader geologic framework of the differentiation and evolution of Vesta

    Compositional Variations in Sands of the Bagnold Dunes, Gale Crater, Mars, from Visible-Shortwave Infrared Spectroscopy and Comparison to Ground-Truth from the Curiosity Rover

    Get PDF
    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that X-ray diffraction-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are nonunique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold Dunes, consistent with a mafic enrichment of sands with cumulative aeolian-transport distance by sorting of olivine, pyroxene, and plagioclase grains. Furthermore, the large variations in Fe and Mg abundances (~20 wt %) at the Bagnold Dunes suggest that compositional variability may be enhanced by local mixing of well-sorted sand with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within Martian aeolian sandstones
    • …
    corecore