136 research outputs found

    Biocorrosion and biofilm formation in a nutrient limited heating system subjected to alternating microaerophilic conditions

    Get PDF
    Severe biofilm formation and biocorrosion have been observed in heating systems even when the water quality complied with existing standards. The coupling between water chemistry, biofilm formation, species composition, and biocorrosion in a heating system was investigated by adding low concentrations of nutrients and oxygen under continuous and alternating dosing regimes. Molecular analysis of 16S rRNA gene fragments demonstrated that the amendments did not cause changes in the overall bacterial community composition. The combined alternating dosing of nutrients and oxygen caused increased rates of pitting (bio-) corrosion. Detection of bacteria involved in sulfide production and oxidation by retrieval of the functional dsrAB and apsA genes revealed the presence of Gram-positive sulfate- and sulfite-reducers and an unknown sulfur-oxidizer. Therefore, to control biocorrosion, sources of oxygen and nutrients must be limited, since the effect of the alternating operational conditions apparently is more important than the presence of potentially corrosive biofilm bacteria

    Distinct nonequilibrium plasma chemistry of C2 affecting the synthesis of nanodiamond thin films from C2H2 (1%)/H2/Ar-rich plasmas

    Get PDF
    6 pages, 5 figures, 6 tables.We show that the concentrations of the species C2 (X 1Σg+), C2 (a 3Πu), and C2H exhibit a significant increase when the argon content grows up to 95% in medium pressure (0.75 Torr) radio frequency (rf) (13.56 MHz) produced C2H2 (1%)/H2/Ar plasmas of interest for the synthesis of nanodiamond thin films within plasma enhanced chemical vapor deposition devices. In contrast, the concentrations of CH3 and C2H2 remain practically constant. The latter results have been obtained with an improved quasianalytic space–time-averaged kinetic model that, in addition, has allowed us to identify and quantify the relative importance of the different underlying mechanisms driving the nonequilibrium plasma chemistry of C2. The results presented here are in agreement with recent experimental results from rf CH4/H2/Ar-rich plasmas and suggest that the growth of nanodiamond thin films from hydrocarbon/Ar-rich plasmas is very sensitive to the contribution of C2 and C2H species from the plasma.This work was partially funded by CICYT (Spain) under a Ramón y Cajal project and under Project No. TIC2002- 03235. One of the authors (F.J.G.V.) acknowledges a Ramón y Cajal contract from the Spanish Ministry of Science and Technology (MCYT). One of the authors (J.M.A.) acknowledges partial support from CICYT (Spain) under Project No. MAT 2002-04085-C02-02.Peer reviewe

    The action of chemical and mechanical stresses on single and dual species biofilm removal of drinking water bacteria

    Get PDF
    The presence of biofilms in drinking water distribution systems (DWDS) is a global public health concern as they can harbor pathogenic microorganisms. Sodium hypochlorite (NaOCl) is the most commonly used disinfectant for microbial growth control in DWDS. However, its effect on biofilm removal is still unclear. This work aims to evaluate the effects of the combination of chemical (NaOCl) and mechanical stresses on the removal of single and dual species biofilms of two bacteria isolated from DWDS and considered opportunistic, Acinectobacter calcoaceticus and Stenotrophomonas maltophilia. A rotating cylinder reactor was successfully used for the first time in drinking water biofilm studies with polyvinyl chloride as substratum. The single and dual species biofilms presented different characteristics in terms of metabolic activity, mass, density, thickness and content of proteins and polysaccharides. Their complete removal was not achieved even when a high NaOCl concentrations and an increasing series of shear stresses (from 2 to 23 Pa) were applied. In general, NaOCl pre-treatment did not improve the impact of mechanical stress on biofilm removal. Dual species biofilms were colonized mostly by S. maltophilia and were more susceptible to chemical and mechanical stresses than these single species. The most efficient treatment (93% biofilm removal) was the combination of NaOCl at 175 mg·l1 with mechanical stress against dual species biofilms. Of concern was the high tolerance of S. maltophilia to chemical and mechanical stresses in both single and dual species biofilms. The overall results demonstrate the inefficacy of NaOCl on biofilm removal even when combined with high shear stresses.(i) POCI-01-0145-FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy – UID/EQU/00511/2013) funded by the European Regional Development Fund (ERDF), through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) and by national funds, through FCT - Fundação para a Ciência e a Tecnologia. (ii) NORTE-01-0145-FEDER-000005 – LEPABE-2-ECO-INNOVATION, supported by North Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). (iii) Grants attributed by Portuguese Foundation for Science and Technology – FCT – to Inês Gomes (SFRH/BD/103810/2014) and Lúcia Simões (SFRH/BPD/81982/2011).info:eu-repo/semantics/publishedVersio

    Deconstructing paxos

    No full text
    • …
    corecore