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Denmark

(Received 17 March 2009; final version received 10 June 2009)

Severe biofilm formation and biocorrosion have been observed in heating systems even when the water quality
complied with existing standards. The coupling between water chemistry, biofilm formation, species composition,
and biocorrosion in a heating system was investigated by adding low concentrations of nutrients and oxygen under
continuous and alternating dosing regimes. Molecular analysis of 16S rRNA gene fragments demonstrated that the
amendments did not cause changes in the overall bacterial community composition. The combined alternating
dosing of nutrients and oxygen caused increased rates of pitting (bio-) corrosion. Detection of bacteria involved
in sulfide production and oxidation by retrieval of the functional dsrAB and apsA genes revealed the presence of
Gram-positive sulfate- and sulfite-reducers and an unknown sulfur-oxidizer. Therefore, to control biocorrosion,
sources of oxygen and nutrients must be limited, since the effect of the alternating operational conditions apparently
is more important than the presence of potentially corrosive biofilm bacteria.
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Introduction

Biofilm formation in heating systems and related
problems such as biofouling and biocorrosion have
for many years been considered insignificant because
of good water quality with high pH, anaerobic
conditions, low conductivity, and limited nutrient
availability. However, several studies have found that
this is not always the case. While general corrosion
rates were low, biocorrosion rates, as inferred from
pitting corrosion, were generally an order of magni-
tude higher (Kjellerup et al. 2003; Olesen et al. 2003).
Biocorrosion has been estimated to cost millions of
dollars annually because of increased costs of opera-
tion and maintenance in addition to the reduced
lifetime caused by perforation/corrosion of pipes and
other installations (Flemming 1996).

The pretreatment of the heating water normally
implies ion exchange, pH adjustment (9.2–10.0), and
deaeration to reduce the occurrence of chemically
induced corrosion. Measurements of oxygen are
regularly performed showing low concentrations be-
cause the steel surfaces serve as oxygen scavengers
(Heitz 1996). Oxygen may also be removed by bacterial

respiration resulting in increased biofilm formation
and promotion of diverse microbial populations.
Biocorrosion in heating systems can occur due to the
presence of many potentially corrosive groups of
microorganisms such as sulfate-reducing bacteria
(SRB), methanogenic Archaea, organic acid-producing
bacteria, sulfur-oxidizing bacteria, iron- and manga-
nese-oxidizing and reducing bacteria (Domingo et al.
1998; Little et al. 2000; Hamilton 2003; Rozanova et al.
2003; Zhang et al. 2003). SRB, in particular, have been
related to corrosion in anoxic systems (Dinh et al.
2004; Videla and Herrera 2005) and they have been
detected in the majority of heating systems investigated
(Goeres et al. 1998). However, heating systems harbor
diverse microbial communities and so far it has not
been possible to link the occurrence of specific
microbial associations and biocorrosion (Kjellerup
et al. 2003, 2004, 2005; Kjeldsen et al. 2007). Although
poorly understood, biocorrosion is likely the result of
interplay between the activity of corrosive microorgan-
isms and environmental physico-chemical conditions.
In particular, oxygen intrusion events may play an
important role because concomitant or sequential
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presence of reduced sulfur compounds derived from
the activity of SRB and oxygen can create a corrosive
environment (Lee and de Beer 1995).

Aerobic bacteria are often observed in heating
systems without oxygen being detected, indicating the
presence of oxygen in concentrations below the
detection limit or temporarily at elevated concentra-
tions (Kjellerup et al. 2003, 2006). Additionally, SRB
have been found in aerobic environments such as
activated sludge aeration tanks (Itoh et al. 2002;
Kjeldsen et al. 2004) and the top layers of microbial
mats (Minz et al. 1999), where they can survive and
consume oxygen even though respiration with sulfate
as electron acceptor does not occur (Dilling and
Cypionka 1990; Krekeler et al. 1998; Teske et al.
1998). Based on this, the role SRB plays in biocorro-
sion of heating systems in the presence of potentially
microaerophilic conditions is important.

Nevertheless, studies of the effect of water chem-
istry on biofilm formation, community composition,
and biocorrosion in heating systems are lacking,
possibly because of the technical challenges in experi-
mentally manipulating heating systems under in situ
like conditions. Such studies are important to under-
stand and prevent biocorrosion. Until recently, little
has been known about corrosive bacteria because they
are difficult to grow; thus the application of culture-
dependent methods has been shown to be difficult to
apply and has led to incorrect results and conclusions
(Wagner et al. 1993; Eschenhagen et al. 2003). There-
fore, the application of culture-independent techniques
for detection and identification of microorganisms
involved in biocorrosion is necessary. A selection of
techniques has been applied to study the microbial
populations in environmental samples, such as fluor-
escence in situ hybridization (FISH), the polymerase
chain reaction (PCR), denaturing gradient gel electro-
phoresis (DGGE), and terminal restriction fragment
length polymorphism (TRFLP) (Muyzer et al. 1993;
Amann et al. 1995; Wilderer et al. 2002; Wagner et al.
2003).

This study examined whether corrosion of mild
steel could be related to variations in physical–
chemical conditions such as alternating concentrations
of oxygen and nutrient availability in the heating water
in the presence of potentially corrosive biofilm
bacteria. The effect of microaerophilic conditions on
biocorrosion is of special interest as large numbers of
aerobic bacteria previously have been detected in
heating systems without oxygen being detected, in-
dicating the presence of oxygen in low concentrations
(Kjellerup et al. 2003, 2006). This is important because
the presence of microaerophilic conditions in a
predominantly anaerobic system can create a very
corrosive environment.

Materials and methods

Operational conditions

Corrosion monitoring units (CMUs) based on the
rotortorque principle (Griebe and Flemming 2000) and
equipped with mild steel coupons were installed in a
side stream of the investigated heating system in
Aalborg, Denmark to ensure in situ conditions
throughout the experiment. This heating system was
selected because of its high water quality and
uninterrupted operation resulting in low in situ
corrosion rates compared to other heating systems
(Kjellerup et al. 2004, 2005). Therefore, this heating
system was suitable for evaluating the corrosion effects
caused by induced changes in the water quality.

Eight CMUs were run during the experiment
to monitor biocorrosion under different conditions
(Table 1). The flow through the CMUs was *1 l
h71 (hydraulic resistance time of *1 h) with
turbulent conditions (surface velocity of *2 m s71)
imitating the conditions of a heating pipe. The
temperature in the return circuit ranged from 39 to
418C (summer/winter). The water quality of the
heating system was: pH 9.8+0.2; conductivity
550 mS cm71; oxygen 510 mg l71; chloride 53
mg l71; sulfate 52 mg l71; total iron 550 mg l71.
Part 1 of the experiment contained five CMUs
supplied with nutrients (sodium acetate and yeast
extract, 5 mg l71 of each), oxygen (0.3 mg l71), or
glutaraldehyde (50 mg l71) once per day by
anaerobically adding (with syringes flushed with
nitrogen) as concentrated solutions as possible to
minimize the added volumes, while oxygen was
added via saturated heating water at 258C. Oxygen
and nutrients were added at 12 h intervals to avoid
growth of heterotrophic aerobic bacteria. Part 2
contained three CMUs, where nutrients were con-
tinuously added to two CMUs with different pH
values and one CMU was run as a control without
any additions. The start concentration of organic
matter corresponded to five times the recommended
maximum limit for Danish heating systems (Metro-
politan Copenhagen Heating Transmission Company
1994), while the oxygen concentration was 15 times
above the recommendation (Danish Council of
District Heating 1999). These conditions simulate
conditions where the heating system would be
continuously contaminated from inflowing sources
having a higher pressure than the heating pipe or
installations, such as domestic hot water tanks or
leaks of contaminated water into the system in cases
of inspection, repair, or maintenance work. The
concentration of glutaraldehyde applied was based
on field experiments (Eager et al. 1986; Videla et al.
1991; Jack and Westlake 1995).

728 B.V. Kjellerup et al.



Sampling

Test coupons of mild steel (SAE 1015) with a surface
area of 14.3 cm2 (2.4 cm 6 6.0 cm, width 6 height),
coated with an inert material on the backside and
cleaned according to ASTM standard G1-90 (ASTM
Standard G1-90, 1999) were inserted into the CMUs.
The experiment was run for 129 days (Part 1) and 63
days (Part 2), respectively. In Part 1, sampling was also
performed after 56 and 109 days. Coupons used for
corrosion measurements were weighed prior to ex-
posure and dried on site using oxygen-free N2 directly
after sampling. Sampling for microbiological analyses
was performed by scraping biofilm off the coupons
using sterile cell scrapers (Orange Scientific) into
sterile-filtered heating water (Millipore, 0.2 mm pore
size). Samples were fixed with formaldehyde (2% final
concentration, v/v) for determination of total bacterial
number or with paraformaldehyde (PFA) and ethanol
for FISH screening. Some coupons were evaluated
with DAPI (40,6-diamidino-2-phenylindole) after
scraping in order to test the efficiency of biofilm
removal.

Total bacterial number in biofilm samples

Determination of the total number of bacteria in
biofilm samples was performed by DAPI stain (1 mg
ml71) and use of epi-fluorescence microscopy accord-
ing to Standard Methods (American Public Health
Association/American Water Works Association/
Water Environment Federation 1995) as described by
Kjellerup et al. (2005).

FISH

FISH was performed with 16S and 23S fluorescently
labeled rRNA-targeted nucleic acid probes (Thermo
Hybaid, Ulm Germany) on biofilm samples according
to Amann et al. (1995) as described by Kjellerup et al.
(2005). The following probes were used: EUB338-mix
(bacteria) (Amann et al. 1990; Daims et al. 1999),
ARCH915 (Archaea) (Stahl and Amann 1991),
ALF968 (Alphaproteobacteria) (Neef 1997), BET42a
(Betaproteobacteria) (Manz et al. 1992), GAM42a
(Gammaproteobacteria) (Manz et al. 1992), SRB385
(Deltaproteobacteria) (Amann et al. 1990), SRB385Db
(Desulfobacteriaceae within the Deltaproteobacteria)
(Rabus et al. 1996), and CF319a (Cytophagales)
(Manz et al. 1996). Details of the hybridization
conditions and probes can be found in probeBase
(Loy et al. 2003). Non-specific binding to the samples
was tested by the Cy3-labeled Nonsense probe NON-
EUB (Wallner et al. 1993) and no signals were
observed.

DGGE and construction of clone libraries

DNA was extracted from biofilm scraped off coupons
from CMUs 1–4 and from enrichment cultures as
described elsewhere (Kjeldsen et al. 2007). DGGE
analysis of bacterial 16S rRNA gene fragments was
performed and dsrAB clone libraries were constructed
as described previously (Kjeldsen et al. 2007). Clone
libraries of apsA were constructed as described by
Abildgaard et al. (2006) using the primers APS7-F,
APS7a-F, APS7b-F, and APS8-R (Friedrich 2002) at
an annealing temperature of 458C for the PCR
amplification of apsA.

Phylogenetic analysis

16S rRNA (from excised DGGE bands), dsrAB, and
apsA amplicons were sequenced, compiled, and aligned
as described previously (Kjeldsen et al. 2007). Phylo-
genetic trees based on deduced dsrAB or apsA amino
acid sequences (consisting of 435 and 242 unambigu-
ously aligned sequence positions, respectively) were
constructed by distance-matrix-based analysis using
the Fitch method implemented in the ARB program
package (Ludwig et al. 2004) with settings according to
Friedrich (2002). Distance-matrix-based bootstrap
analysis (100 replicates) was performed using PAUP*
version 4.0b10 (Swofford 2003).

Accession numbers

The obtained sequences from the present study
have been submitted to GenBank under the acces-
sion numbers EU156158 to EU156163 for 16S rRNA
gene sequences, EU156164 to EU156166 for apsA gene
sequences and EU156167 to EU156170 for dsrAB gene
sequences.

Enrichment of SRB

Coupons, originating from CMU 1–4, from which
biofilm had been scraped off, were incubated at 408C in
the dark in anoxic medium adjusted to pH 9.4 to
promote the growth of SRB potentially left on the
coupons. The medium was based on the buffer 3-
[cyclohexylamino]-2-hydroxy-1-propanesulfonic acid
(CAPSO, pKa 9.4, 378C) and was prepared as
described previously (Kjeldsen et al. 2007). A mixture
of the following substrates (2 mM final concentration
each) served as energy and carbon sources: acetate,
lactate, propionate, ethanol, and glucose. After in-
cubation for 1 month, the enrichment cultures were
harvested for DNA extraction by centrifugation. The
enriched SRB were identified by cloning and sequen-
cing of dsrAB and apsA as described earlier.
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Corrosion

Corrosion of the mild steel coupons was investigated
by measurements of weight loss and pit formation.
Weight loss was assessed according to ASTM Stan-
dard G1-90 (ASTM 1999). Pit formation was deter-
mined for the individual coupons by visual inspection
in combination with laser interferometry (ASTM 1994;
UBM 2009) as previously described (Kjellerup et al.
2003). Statistical evaluation (Students t-test; p 50.05)
was performed for the pitting corrosion rates with the
software SigmaStat 3.0 to determine significant differ-
ences of the corrosion rates. The pitting factor (PF)
was determined as the deepest metal penetration
divided by the average metal penetration according
to G46-94 (ASTM 1994). A PF close to 1 represents
uniform corrosion and increasing numbers represents
higher degree of pitting.

Results

Total number of bacteria

The highest numbers (87 6 106 cells cm72) were
observed when nutrients were dosed continuously at
pH 9.2, whereas numbers 10 and 100 times lower than
this were observed during alternating dosing and
during control conditions, respectively (Table 2).
When glutaraldehyde was added, the numbers
decreased to 0.04 6 106 cells cm72 (ie 100 fold).
Under alternating conditions with oxygen and nutri-
ents added individually the bacterial numbers in-
creased over time, while a steady state was reached
after 56 days when nutrients in combination with
oxygen were added. In the case of continuous addition
of nutrients at pH 8.2 (CMU 7), the total bacterial
numbers were similar to the CMU which experienced

an alternating supply of nutrients (CMU 1), while the
total number increased 25 fold when the pH was
increased to pH 9.2 (CMU 8).

Microbial diversity

FISH

Biofilm samples from CMUs 6–8 (continuous addi-
tion) were screened with FISH to evaluate their
microbial diversity (Table 3). Samples obtained from
the remaining CMUs could not be analyzed with FISH
even though clear signals were observed with the
general nucleic acid stain DAPI for all CMUs. The

Table 1. Operational conditions in the CMUs.

Parameter

Alternating dosing Continuous dosing

1 2 3 4 5 6 7 8

Dosing Org O2 Org/O2 – GA – NaOH NaOH
Dosing time (min day71) 2 2 2 0 2 0 Cont. Cont.
Sulfate (mg l71) 0 0 0 0 0 0 8.2 (0.4) 8.2 (0.4)
Acetate (mg l71) 5 0 5 0 0 0 6.2 (0.4) 6.2 (0.4)
Yeast extract (mg l71) 5 0 5 0 0 0 5 5
Oxygen (mg l71) 0 0.3 0.3 0 0 0 0 0
Glutaraldehyde (mg l71) 0 0 0 0 50 0 0 0
pH 10.0 (0.2) 10.3 (0.4) 10.0 (0.2) 9.8 (0.2) 9.8 (0.2) 9.8 (0.2) 8.2 (0.2) 9.2 (0.2)
Temperature (8C) 25 (3) 25 (2) – 24 (2) – 30a 30a 30a

Flow (l h71) 0.9 (0.1) 0.9 (0.1) 0.9 (0.2) 0.9 (0.1) 0.9 (0.3) 1.0 (0.1) 1.0 (0.1) 1.0 (0.1)
Exposure time (days) 129 129 129 129 129 63 63 63

The concentrations listed for the alternating conditions were obtained in the CMUs after dosing for 2 min; 1–8 represent CMU numbers; Org,
organic matter; GA, glutaraldehyde.
aNot measured, but controlled by an external heating system.

Table 2. Total number of bacteria in biofilm samples from
mild steel coupons.

Treatment

Total number of bacteria
(6106 cells cm72)

56 days 109 days 129 days

Part 1
Organic matter 1.6 (0.005) 1.7 (0.0007) 2.2 (0.01)
O2 6.3 (0.03) 7.0 (0.01) 18.4 (0.04)
Organic matter/O2 3.1 (0.005) 12.2 (0.04) 11.8 (0.03)
Control 0.2

(0.0004)
0.60 (0.004) 0.5

(0.0004)
Glutaraldehyde 0.04

(0.0003)a
0.05

(0.00009)b
Ns

Part 2
Control 5.6 (1.9)c Ns Ns
pH ¼ 8.2 3.5 (0.90)c Ns Ns
pH ¼ 9.2 87.4 (14.1)c Ns Ns

The 95% confidence interval is shown; Ns: No sample due to
different duration of experiments.

Sampling was performed after a41 days, b94 days and c63 days
instead of the main sampling dates due to a later start.
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reason might be a limited number of ribosomes in
the cells because of starvation or death in the case of
glutaraldehyde. More sensitive FISH techniques such
as catalyzed reporter deposition-fluorescence in situ
hybridization (CARD-FISH) (Pernthaler et al. 2002)
were not applied because lack of signal was not
anticipated since previous studies in heating systems
using conventional FISH probes were successful
(Kjellerup et al. 2003). Therefore, the samples were
not collected and treated for that analysis. The FISH
screening showed that 55–63% of the total number of
bacteria could be hybridized with the general probe
mix for bacteria, showing that a large proportion of
the bacteria might have been inactive, dead or did not
contain enough ribosomes for identification. No
Archaea were detected and the major bacterial groups
were proteobacteria and cytophagales with the Beta-
proteobacteria as the dominant group. In total, 19–
22% of the total number of bacteria was identified
leaving a large proportion of bacteria hybridized with
the general bacterial probe unidentified. SRB, as
inferred from positive hybridizations with the probes
SRB385 (targeting the families Desulfovibrionaceae
and Desulfobulbaceae within the Deltaproteobacteria)
and SRB385db (targeting the families Desulfobacter-
aceae and Syntrophobacteraceae within the Deltapro-
teobacteria) (Stahl et al. 2007) were present (Figure 1),
but in low numbers (51% of the total number of
bacteria). Non-target bacteria could also be detected
using the probes SRB385 and SRB385db (Lucker et al.
2007) resulting in false positive detection of SRB in the
biofilm samples from the CMUs. Therefore, the results
obtained with these probes are inconclusive in this case
and the two FISH probes should be used in double
hybridization with more specific SRB probes. Thus,
the results obtained with these probes do not prove the
presence of SRB in the biofilm samples (see below-
retrieval of SRB functional genes).

DGGE analysis

The bacterial diversity of CMUs 1–4 was evaluated by
DGGE analysis of 16S rRNA amplicons. Dominant
bands were shared among the individual and combined
treatments with oxygen and nutrients showing a large
degree of commonality between the samples despite the
difference in operational conditions. The six dominant
bands were excised from the gel and sequenced
(Table 4). Four bands represented members of the
class Betaproteobacteria, whereas the two remaining
bands were affiliated with Alphaproteobacteria and the
phylum Chloroflexi, respectively. SRB were not
identified with DGGE, which corresponds with other
studies where DGGE has been shown only to detect
PCR amplicons making up 41% of the total pool of
amplicons (ie community members making up 41%
of the total community) (Muyzer et al. 1993). Accord-
ing to the FISH results, SRB constitute 51% of the
total population and cannot be expected to be
observed with DGGE. In addition, the applied FISH
probes might also have hybridized non-target bacteria
causing detection of false-positive SRB that would not
be detected with DGGE either. Detection of specific
bacterial groups present in low numbers, as might be
the case with the SRB in this study, can be detected by
use of specific targets such as functional genes (shown
below).

Table 3. FISH analysis of biofilm samples from mild steel
coupons showing the percentage of FISH positive cells
compared with DAPI.

Target Probe

% of DAPI

pH ¼ 8.2 pH ¼ 9.2

Nonsense probe Non-EUB 0 0
Archaea ARCH915 0 0
Bacteria Eub-mix 55.2 (4.3) 63.3 (2.4)
Alphaproteobacteria ALF968 0.1 (0.03) 0
Betaproteobacteria BET42 17.0 (1.2) 15.6 (2.7)
Gammaproteobacteria GAM42a 2.2 (0.9) 2.0 (2.0)
Deltaproteobacteria SRB385 0.3 (0.2) 0.1
Desulfobacteriaceae SRB385Db 0.3 (0.2) 0.2
Cytophagales CF319a 1.8 (1.0) 1.5 (1.3)
Unidentified – 23.1 17.3

The 95% confidence interval is shown.

Figure 1. FISH image showing bacteria from a
homogenized biofilm sample hybridized with the probes
Srb385 (Green) and Srb660 (Red) targeting
Deltaproteobacteria and Desulfobulbus sp., respectively. No
Desulfobulbus sp. was targeted thus no red bacteria are
present in the image.
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Detection and identification of SRB

The occurrence and activity of SRB in biofilms from
CMUs 1–4 was inferred from the presence of sulfide on
mild steel coupons (results not shown). Two different
approaches were used for sensitive detection and
identification of SRB: PCR-based retrieval of the
functional marker genes dsrAB and apsA and cultiva-
tion-based enrichment.

dsrAB clone libraries

PCR amplicons of dsrAB were obtained from biofilm
samples from CMU 2 and 4 as well as from enrichment
cultures. A single sequence type, affiliated with

members of the Gram-positive SRB genus Desulfoto-
maculum, occurred among the 36 and 21 dsrAB
sequences retrieved from the biofilm samples originat-
ing from CMU 2 and 4, respectively (Figure 2). This
phylotype was also present in enrichment cultures from
CMU 1, 2, and 3 from each of which 21–25 dsrAB
sequences were retrieved. Furthermore, sequences
highly similar to the Gram-positive bacterium Desulfi-
tibacter alkalitolerans and strain EtOH8 were obtained
from the enrichment cultures (Figure 2a). These
bacteria were originally isolated from a heating system
and represent alkali-tolerant sulfite-reducing species,
which are unable to grow by reducing sulfate and were
probably present in the enrichment cultures due to
their fermentative capacities. However, reduction of

Table 4. Phylogenetic affiliation of DGGE band sequences retrieved from DGGE analysis of bacterial 16S rRNA gene
fragments that were PCR amplified from biofilm samples.

Band no. Closest match in GenBank databasea %b

CMUc

1 2 3 4

Alphaproteobacteria
DGGE band 6 Blastochloris sulfoviridis, AY117148 92 * þ * 7

Betaproteobacteria
DGGE band 1 Denitratisoma oestradiolicum, AY879297 94 þ * * *
DGGE band 2 Alcaligenaceae bacterium BL–169, DQ196633 94 þ * 7 7
DGGE band 3 Caldimonas taiwanensis, AY845052 96 7 þ 7 7
DGGE band 5 Hydrogenophaga pseudoflava, AF078770 94 7 þ 7 7

Chloroflexi
DGGE band 4 Bellilinea caldifistulae, AB243672 94 * * þ 7

þ, Presence of DGGE band confirmed by sequencing; *, presence of DGGE band inferred by visual inspection of the DGGE gels; –, not detected.
aAs determined by BLAST search; bPercent sequence identity as determined by BLAST search; cCMU from which coupon biofilm- or coupon
enrichment-sample originates.

Figure 2. (a,b) Distance-matrix-based trees showing the phylogenetic affiliation of deduced dsrAB (a) and apsA (b) amino acid
sequences retrieved from biofilm and enrichment cultures from reactors 1–4 (all shown in bold). Nodes receiving 480%
bootstrap support are marked by open circles. Numerals in square brackets indicate the numbers of genera and/or named species
constituting the respective grouping. Bars represent 10% estimated sequence divergence.
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thiosulfate, sulfite, or elementary sulfur produced by
sulfide oxidation might also occur, since these sulfur
species likely exist in the heating systems due to
the introduction of oxygen into the otherwise
reduced environment (Nielsen et al. 2006; Kjeldsen
et al. 2007).

apsA clone libraries

PCR amplicons of apsA were obtained from biofilm
samples from CMU1, 2, and 3 as well as from
enrichment cultures. Unexpectedly, most of the clones
turned out not to carry apsA inserts even though the
inserts were of the expected size. Two different apsA
phylotypes were identified from the biofilm samples.
One clustered with the sulfide-oxidizer Thiobacillus
denitrificans that was retrieved from CMU1, 2, and 3
(Figure 2b), while the other apsA phylotype clustered
with members from the genus Desulfotomaculum. The
latter most likely represented the same SRB as
identified by the dsrAB approach and was also present
in the enrichments.

Corrosion measurements

General and pitting corrosion were quantified to
evaluate whether corrosion was induced on the mild
steel coupons when oxygen and nutrients were added.
General corrosion, as inferred from weight loss, was
observed in all CMUs except from CMU 7 and 8 with
continuous dosing of nutrients. Under alternating
conditions, the general corrosion rates varied from 7
to 10 mm year?71 after 56 days, with increased general
corrosion rates after 109 days for the control and the
combined treatment with nutrients (Table 5). CMUs 7
and 8 (continuously dosed with nutrients) were applied
as positive controls to examine the effect of substrate
addition on biofilm formation and biocorrosion in a
nutrient limited environment.

Pitting corrosion was observed on the mild steel
coupons when alternating conditions were introduced
in CMU 1–5 and in the control CMU (Table 5) with

pitting corrosion rates ranging from 143 to 254 mm
year71 after 56 days. The lowest rate was observed
when only nutrients were added and the highest when
the combined treatment with nutrients and oxygen
occurred. The corrosion rates decreased for all CMUs
to 80–107 mm year71 toward the end of the experi-
ment. The pitting corrosion rates were 10–40 times
higher than the general corrosion rates showing that
pitting corrosion was induced, when alternating con-
ditions occurred. This was also supported by the PF
showing that pitting corrosion was the predominant
form of corrosion (data not shown).

Glutaraldehyde was added to one CMU as an
abiotic control to reduce biofilm formation. However,
while reducing the biofilm formation the corrosion rate
was not reduced. In other studies where glutaraldehyde
was applied, similar corrosive effects of the non-
oxidizing biocide has been observed (Fang et al.
2002; Vizcaino-Alcaide et al. 2003). In the study by
Vizcaino-Alcaide et al. (2003), corrosion due to
glutaraldehyde occurred on a hospital scalpel, when
organic matter was present on the steel surface, but not
on a clean surface. Also, a study by Fang et al. (2002)
showed that mild steel surfaces in the presence of
glutaraldehyde still experienced biofilm growth and
corrosion. An additional reason for corrosion in the
CMU dosed with glutaraldehyde might be the removal
of magnetite by glutaraldehyde that was deposited on
the mild steel coupons due to the chemical conditions
in the heating water (observed visually). In the positive
control CMUs (7–8), corrosion was not observed,
which might have been due to formation of a
protective biofilm when yeast extract was fed in the
continuous feed medium. In other laboratory studies,
the use of yeast extract in culture media has been
shown to interfere with electrochemical corrosion
measurements (Webster and Newman 1994; Little
et al. 2007).

Qualitative observations of the corrosion revealed
that CMUs dosed with either oxygenated heating
water (CMU 2) or oxygen in combination with
nutrients (CMU 3) experienced pitting corrosion

Table 5. General and pitting corrosion rates on mild steel coupons exposed to alternating conditions.

Treatment

General corrosion rate (mm year71) Pitting corrosion rate (mm year71)

56 days 109 days 129 days 56 days 109 days 129 days

Organic matter 7.0 (1.5) 6.9 (2.6) 1.6 143.4 (12.8) 98.8 (7.9) 80.4 (9.0)
O2 9.0 (0.1) 8.5 (2.5) 5.6 (1.0) 192.9 (52.9) 110.5 (11.9) 88.2 (17.5)
Organic matter/O2 8.9 (1.0) 13.3 (4.1) 5.5 (0.8) 253.9 (31.6) 115.9 (8.5) 107.2 (14.0)
Control 10.4 (2.6) 12.2 (2.5) 8.0 (3.5) 177.3 (24.7) 100.5 (10.3) 85.7 (20.4)
Glutaraldehyde 7.2 (9.1)a 2.9 (0.2)b – 247.5 (35.0)a 100.2 (4.6)b –

Corrosion was not observed when continuous dosing occurred. The 95% confidence interval is shown.

Sampling was performed after a41 days and b94 days instead of the main sampling dates due to a later start.
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starting as few and separated pits (data not shown).
During the experiment the pits increased in size, and
some of them merged and developed into wide and
deep pits. In the control (CMU 4) and CMU 1 dosed
with nutrients the pits remained separated, but
increased in size and merged into lines across the
coupons.

Statistical tests were performed to evaluate whether
the increased pitting corrosion rates for the CMU
supplied with a combination of alternating oxygen and
nutrients (CMU 3) were statistically significant com-
pared to the other treatments after exposure for 56,
109, and 129 days, respectively. The corrosion rates
from the combined treatment (CMU 3) exceeded the
pitting corrosion rates from CMU supplied with
nutrients (CMU 1) at all sampling times. In compar-
ison, statistically significant values (p50.05) were only
obtained at day 56 for the CMU 2 supplied with
oxygen and at days 56 and 109 for the control (CMU
4). At the termination of the experiment at day 129, the
combined treatment had an impact on the pitting
corrosion (90% confidence level) compared to the
control and the other CMUs. The data also showed
that oxygen in combination with nutrients increased
the pitting corrosion rates, while addition of nutrients
alone decreased the corrosion compared to the control.
For the oxygen treatment the pitting corrosion rates
were unchanged compared to the control.

When comparing the corrosion rates and the total
number of bacteria for the CMUs treated by alternat-
ing dosing, the highest number of bacteria was
observed when the highest pitting corrosion rates
were present. The lowest numbers of bacteria were
present when glutaraldehyde was added (CMU 5) and
in the control (CMU 4). This former observation did
not correspond with the lowest pitting corrosion rates
that were present when nutrients were added inter-
mittently, but could be explained by corrosion due to
glutaraldehyde even though glutaraldehyde reduced
the number of biofilm bacteria present. Similar
corrosive effects were observed in a study by Fang
et al. (2002), where it was shown that corrosion of mild
steel occurred in the presence of glutaraldehyde due to
the presence of layers of extracellular polymeric
substances (EPS) formed at the metal surface between
clumps of biofilm. Due to this colonization pattern
electrochemical gradients were formed, where the
biofilm behaved as cathode and the EPS as anode
causing biocorrosion of the mild steel surface (Fang
et al. 2002). Thus, glutaraldehyde can act as a biocide
and reduce the number of bacteria, while the remaining
bacteria and EPS produced can form electrochemical
gradients at the surface and cause corrosion, which
might have been the case in this study of the heating
system.

Discussion

Influence of alternating conditions on bacterial
diversity

Only minor differences in the microbial populations
were observed between the CMUs despite major
differences in the nutrient dosing regimes. Betaproteo-
bacteria were the dominant bacterial groups in the
biofilm, while SRB were detected in low numbers with
FISH and qualitatively with the functional genes for
SRB detection dsrAB and apsA.

A Gram-positive SRB (Desulfotomaculum sp.) was
identified, when the dsrAB and apsA approach was
applied to CMUs 1–4, while the FISH analysis
indicated the presence of Gram-negative SRB in
CMU 7 and 8. Furthermore, dsrAB and apsA gene
sequence types closely related to Desulfitibacter alka-
litolerans, strain EtOH8 and Thiobacillus denitrificans
were detected in CMUs 1–4. D. alkalitolerans and
strain EtOH8 (both isolated from heating systems) are
Gram-positive, alkali-tolerant, sulfite- and thiosulfate-
reducers unable to reduce sulfate, with pH growth
optima around pH 9.0–9.5 (Nielsen et al. 2006).
T. denitrificans is a sulfide-oxidizer and, thus, possibly
forming a sulfur cycle together with the SRB and the
sulfite-reducers in the biofilms. As described in earlier
biocorrosion studies, the simultaneous presence of
reduced sulfur compounds and oxygen can create a
very corrosive environment because of the formation
of elementary sulfur, polysulfides, and other com-
pounds which can establish an autocatalytic corrosion
process that can take place even in the absence of
active SRB (Lee et al. 1993; Nielsen et al. 1993).

The general bacterial diversity analyzed by DGGE
showed that bacteria closely related to Alcaligenaceae
bacterium BL-169 isolated from groundwater con-
taminated with chloroethanes and other solvents
(Bowman et al. 2006) as well as Denitratisoma
oestradiolicum and Bellilinea caldifistulae.The former
is a denitrifying oestradiol-degrading bacterium (Fahr-
bach et al. 2006) and the latter a strictly anaerobic,
filamentous bacterium isolated from a methanogenic
consortium (Yamada et al. 2007). In the current as well
as in the previous study of heating systems, several
bacteria were identified that had a high similarity to
bacteria degrading complex organic substances such as
polychlorinated biphenyls, polycyclic aromatic hydro-
carbons, and phenols (Kjellerup et al. 2005). As
described by Kjellerup et al. (2005) the nutrient poor
conditions in the heating systems fit well with this
bacterial physiology. Additional bacteria were most
closely related (93–96% sequence identity) to: (1) the
thermophilic aerobe Caldimonas taiwanensis (Chen
et al. 2005). Although not tested for C. taiwanensis
the other member of the genus Caldimonas,

734 B.V. Kjellerup et al.



C. manganoxidans oxidize manganese and is moder-
ately alkaliphilic (Takeda et al. 2002); (2) the
mesophilic aerobic H2-oxidizer Hydrogenphaga pseu-
doflava (Willems et al. 1989); notably other species
belonging to this genus grow by oxidizing thiosulfate
and by fermentation (Chung et al. 2007); (3) the
mesophilic photothrophic sulfide-oxidizer Blastochloris
sulfoviridis, which also grows heterotrophically under
microaerophilic conditions (Hiraishi 1997). The pre-
sence of a biofilm consisting of diverse microbial
populations together with alternating conditions of
oxygen and nutrients even at a microaerophilic level
was shown to cause corrosion in this heating system.
While the bacterial diversity seemed not to be
influenced by the operational conditions, the alternat-
ing nutrient and oxygen dosing created microniches or
local environments in the biofilm that lead to the
observed biocorrosion.

Effect of microaerophilic vs anaerobic/anoxic
conditions

Alternating microaerophilic conditions were estab-
lished when oxygen was added intermittently to
CMUs installed in the heating system. In combina-
tion with alternating nutrient addition, this induced a
corrosive environment with high numbers of bio-
film bacteria (Table 2), evidently causing elevated
pitting corrosion on the mild steel coupons. Pitting
corrosion is more commonly observed than general
corrosion when bacteria are involved and is often
referred to as biocorrosion (Little et al. 1992). In an
earlier study of heating systems similar corrosion
patterns were observed (Kjellerup et al. 2004). The
alternating conditions used in this study simulated in
situ conditions in heating systems since continuous
contamination with oxygen and nutrients rarely
happens (Danish Council of District Heating 1999).
The contaminant sources have previously been
related to improper treatment of the supply water,
leaks into the system from domestic hot water tanks
or leaks of air into the system in cases of inspection,
repair or maintenance work. Nutrient sources also
include installation and repair of heating system
components, where protective layers of oil and
grease are applied to reduce chemically induced
corrosion and scale formation during transport and
handling (Olesen et al. 2003).

While it might be impossible to prevent biofilm
formation even in nutrient limited systems such as
heating systems, it might be possible to control
corrosion by benefitting from protective bacterial
biofilms (Little et al. 2007; Zuo 2007). Common for
the strategies described by Little et al. (2007) and Zuo
(2007) was the ability to control the conditions in the

systems in order to benefit from the protective
characteristics of the biofilm. In heating systems, it is
difficult to maintain conditions that would imply the
presence of stable and protective biofilms due to a
continuous supply of nutrients in the absence of
oxygen. In addition, this study showed that severe
pitting corrosion occurred in the heating system when
nutrients were added intermittently together with small
amounts of oxygen thus causing microaerophilic
conditions. These alternating conditions resembled
the conditions of a full scale heating system and
showed that sources of oxygen and nutrients should be
limited in order to control biocorrosion. This is
particularly important because the results indicate
that corrosion was not due to the presence of specific
bacterial groups in the biofilm but mainly caused by
the effects of the induced alternating oxygen and
nutrient conditions on the metabolic state of the
microbial populations thus changing the chemistry of
the system.
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