72 research outputs found

    Dequantized Differential Operators between Tensor Densities as Modules over the Lie Algebra of Contact Vector Fields

    Get PDF
    In recent years, algebras and modules of differential operators have been extensively studied. Equivariant quantization and dequantization establish a tight link between invariant operators connecting modules of differential operators on tensor densities, and module morphisms that connect the corresponding dequantized spaces. In this paper, we investigate dequantized differential operators as modules over a Lie subalgebra of vector fields that preserve an additional structure. More precisely, we take an interest in invariant operators between dequantized spaces, viewed as modules over the Lie subalgebra of infinitesimal contact or projective contact transformations. The principal symbols of these invariant operators are invariant tensor fields. We first provide full description of the algebras of such affine-contact- and contact-invariant tensor fields. These characterizations allow showing that the algebra of projective-contact-invariant operators between dequantized spaces implemented by the same density weight, is generated by the vertical cotangent lift of the contact form and a generalized contact Hamiltonian. As an application, we prove a second key-result, which asserts that the Casimir operator of the Lie algebra of infinitesimal projective contact transformations, is diagonal. Eventually, this upshot entails that invariant operators between spaces induced by different density weights, are made up by a small number of building bricks that force the parameters of the source and target spaces to verify Diophantine-type equations.Comment: 22 page

    Simultaneous deformations and Poisson geometry

    Full text link
    We consider the problem of deforming simultaneously a pair of given structures. We show that such deformations are governed by an L-infinity algebra, which we construct explicitly. Our machinery is based on Th. Voronov's derived bracket construction. In this paper we consider only geometric applications, including deformations of coisotropic submanifolds in Poisson manifolds, of twisted Poisson structures, and of complex structures within generalized complex geometry. These applications can not be, to our knowledge, obtained by other methods such as operad theory.Comment: 32 pages. Results in Section 2 improved (Lemma 2.6 and Corollaries 2.20, 2.22). Corollary 2.5 and Corollary 2.11 added. Final version, accepted for publicatio

    Optimized Crystallographic Graph Generation for Material Science

    Full text link
    Graph neural networks are widely used in machine learning applied to chemistry, and in particular for material science discovery. For crystalline materials, however, generating graph-based representation from geometrical information for neural networks is not a trivial task. The periodicity of crystalline needs efficient implementations to be processed in real-time under a massively parallel environment. With the aim of training graph-based generative models of new material discovery, we propose an efficient tool to generate cutoff graphs and k-nearest-neighbours graphs of periodic structures within GPU optimization. We provide pyMatGraph a Pytorch-compatible framework to generate graphs in real-time during the training of neural network architecture. Our tool can update a graph of a structure, making generative models able to update the geometry and process the updated graph during the forward propagation on the GPU side. Our code is publicly available at https://github.com/aklipf/mat-graph

    L-infinity algebra actions

    Get PDF
    We define the notion of action of an L-infinity algebra gg on a graded manifold MM, and show that such an action corresponds to a homological vector field on g[1]×Mg[1] \times M of a specific form. This generalizes the correspondence between Lie algebra actions on manifolds and transformation Lie algebroids. In particular, we consider actions of gg on a second L-infinity algebra, leading to a notion of "semidirect product" of L-infinity algebras more general than those we found in the literature.Comment: v2: Final version, to appear in Diff. Geom. App

    Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    Full text link
    In this paper we construct ternary qq-Virasoro-Witt algebras which qq-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1,1)su(1,1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary qq-Virasoro-Witt algebras constructed in this article are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield Hom-Nambu Lie algebra structure for qq-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary qq-Virasoro-Witt algebras we construct, carry a structure of ternary Hom-Nambu-Lie algebra for all values of the involved parameters

    The homotopy theory of simplicial props

    Full text link
    The category of (colored) props is an enhancement of the category of colored operads, and thus of the category of small categories. In this paper, the second in a series on "higher props," we show that the category of all small colored simplicial props admits a cofibrantly generated model category structure. With this model structure, the forgetful functor from props to operads is a right Quillen functor.Comment: Final version, to appear in Israel J. Mat

    Derived coisotropic structures I: affine case

    Get PDF
    We define and study coisotropic structures on morphisms of commutative dg algebras in the context of shifted Poisson geometry, i.e. PnP_n-algebras. Roughly speaking, a coisotropic morphism is given by a Pn+1P_{n+1}-algebra acting on a PnP_n-algebra. One of our main results is an identification of the space of such coisotropic structures with the space of Maurer--Cartan elements in a certain dg Lie algebra of relative polyvector fields. To achieve this goal, we construct a cofibrant replacement of the operad controlling coisotropic morphisms by analogy with the Swiss-cheese operad which can be of independent interest. Finally, we show that morphisms of shifted Poisson algebras are identified with coisotropic structures on their graph.Comment: 49 pages. v2: many proofs rewritten and the paper is split into two part
    • …
    corecore