24 research outputs found

    The overlooked manipulation of nucleolar functions by plant pathogen effectors

    Get PDF
    Pathogens need to manipulate plant functions to facilitate the invasion of their hosts. They do this by secreting a cocktail of molecules called effectors. Studies of these molecules have mostly focused on the mechanisms underlying their recognition and the subsequent transcriptional reprogramming of cells, particularly in the case of R gene-dependent resistance. However, the roles of these effectors are complex, as they target all cell compartments and their plant targets remain largely uncharacterized. An understanding of the mechanisms involved would be a considerable asset for plant breeding. The nucleolus is the site of many key cellular functions, such as ribosome biogenesis, cellular stress regulation and many other functions that could be targets for pathogenicity. However, little attention has been paid to effectors targeting nucleolar functions. In this review, we aim to fill this gap by providing recent findings on pathogen effectors that target and manipulate nucleolar functions and dynamics to promote infection. In particular, we look at how some effectors hijack ribosome biogenesis, the modulation of transcription or alternative splicing, all key functions occurring at least partially in the nucleolus. By shedding light on the role of the plant nucleolus in pathogen interactions, this review highlights the importance of understanding nucleolar biology in the context of plant immunity and the mechanisms manipulated by plant pathogens

    Three-dimensional nuclear organization in Arabidopsis thaliana

    Full text link
    In recent years, the study of plant three-dimensional nuclear architecture received increasing attention. Enabled by technological advances, our knowledge on nuclear architecture has greatly increased and we can now access large data sets describing its manifold aspects. The principles of nuclear organization in plants do not significantly differ from those in animals. Plant nuclear organization comprises various scales, ranging from gene loops to topologically associating domains to nuclear compartmentalization. However, whether plant three-dimensional chromosomal features also exert similar functions as in animals is less clear. This review discusses recent advances in the fields of three-dimensional chromosome folding and nuclear compartmentalization and describes a novel silencing mechanism, which is closely linked to nuclear architecture

    Glutathione-mediated thermomorphogenesis and heat stress responses in Arabidopsis thaliana

    No full text
    International audienceAbstract In the context of climate change, the global rise of temperature and intense heat waves affect plant development and productivity. Among the molecular perturbations that high temperature induces in living cells is the accumulation of reactive oxygen species (ROS), which perturbs the cellular redox state. In plants, the dynamics of the cellular and subcellular redox state have been poorly investigated under high temperature. Glutathione plays a major role in maintaining the cellular redox state. We investigated its contribution in adaptation of Arabidopsis thaliana to contrasting high temperature regimes: high ambient temperature inducing thermomorphogenesis and heat stress affecting plant viability. Using the genetically encoded redox marker roGFP2, we show that high temperature regimes lead to cytoplasmic and nuclear oxidation and impact the glutathione pool. This pool is restored within a few hours, which probably contributes to plant adaptation to high temperatures. Moreover, low glutathione mutants fail to adapt to heat stress and to induce thermomorphogenesis, suggesting that glutathione is involved in both heat adaptation mechanisms. We also evaluate the transcriptomic signature in the two high temperature regimes and identified gene expression deviations in low glutathione mutants, which might contribute to their sensitivity to high temperature. Thus, we define glutathione as a major player in the adaptation of Arabidopsis to contrasting high temperature regimes

    Large tandem duplications affect gene expression, 3D organization, and plant–pathogen response

    Full text link
    Rapid plant genome evolution is crucial to adapt to environmental changes. Chromosomal rearrangements and gene copy number variation (CNV) are two important tools for genome evolution and sources for the creation of new genes. However, their emergence takes many generations. In this study, we show that in Arabidopsis thaliana, a significant loss of ribosomal RNA (rRNA) genes with a past history of a mutation for the chromatin assembly factor 1 (CAF1) complex causes rapid changes in the genome structure. Using long-read sequencing and microscopic approaches, we have identified up to 15 independent large tandem duplications in direct orientation (TDDOs) ranging from 60 kb to 1.44 Mb. Our data suggest that these TDDOs appeared within a few generations, leading to the duplication of hundreds of genes. By subsequently focusing on a line only containing 20% of rRNA gene copies (20rDNA line), we investigated the impact of TDDOs on 3D genome organization, gene expression, and cytosine methylation. We found that duplicated genes often accumulate more transcripts. Among them, several are involved in plant–pathogen response, which could explain why the 20rDNA line is hyper-resistant to both bacterial and nematode infections. Finally, we show that the TDDOs create gene fusions and/or truncations and discuss their potential implications for the evolution of plant genomes

    Extrachromosomal circular DNA and structural variants highlight genome instability in Arabidopsis epigenetic mutants

    Get PDF
    International audienceAbstract Abundant extrachromosomal circular DNA (eccDNA) is associated with transposable element (TE) activity. However, how the eccDNA compartment is controlled by epigenetic regulations and what is its impact on the genome is understudied. Here, using long reads, we sequence both the eccDNA compartment and the genome of Arabidopsis thaliana mutant plants affected in DNA methylation and post-transcriptional gene silencing. We detect a high load of TE-derived eccDNA with truncated and chimeric forms. On the genomic side, on top of truncated and full length TE neo-insertions, we detect complex structural variations (SVs) notably at a disease resistance cluster being a natural hotspot of SV. Finally, we serendipitously identify large tandem duplications in hypomethylated plants, suggesting that SVs could have been overlooked in epigenetic mutants. We propose that a high eccDNA load may alter DNA repair pathways leading to genome instability and the accumulation of SVs, at least in plants

    Histone methyltransferases regulating rRNA gene dose and dosage control in Arabidopsis

    No full text
    While plants have thousands of nearly identical rRNA genes, not all of them are constantly transcribed. At certain developmental stages, when the cellular demand is low, rRNA gene dosage is controlled via down-regulation of a subset of the genes. Pikaard and colleagues now identify the histone H3K9 and H3K27 methyltransferases that promote rRNA gene silencing and influence which genes are silenced. Interestingly, the identities of these chromatin modifiers vary with genomic context
    corecore