1,691 research outputs found
Network properties underlying seed germination control
We sought to gain a mechanistic understanding of the control of seed dormancy and germination by hormone balance. The field has matured to a stage where most of the key genes are known, and competing hypotheses have been proposed to explain how hormone balance works in seeds. During the meeting we simplified a more complex model of seed germination (Figure 1), reducing it to a tractable network. We then showed that if considered as a set of competing protein complexes the network took on the properties of a switch. Results from two models of the reduced network, which incorporated the biological switching phenomena, were found to be in good agreement with both wild and mutant phenotypic data. Our models made the novel prediction that one complex in particular was key to promoting germination, and this prediction can now
be tested in the laboratory
Measuring glucose content in the aqueous humor
Many diabetics must measure their blood glucose levels regularly to maintain good health. In principle, one way of measuring the glucose concentration in the human body would be by measuring optically the glucose content of the aqueous humor in the eye. Lein Applied Diagnostics wish to assess whether this is feasible by a linear confocal scan with an LED source, or by supplementing such a system with other measurements
Vertex-element models for anisotropic growth of elongated plant organs
New tools are required to address the challenge of relating plant hormone levels, hormone responses, wall biochemistry and wall mechanical properties to organ-scale growth. Current vertex-based models (applied in other contexts) can be unsuitable for simulating the growth of elongated organs such as roots because of the large aspect ratio of the cells, and these models fail to capture the mechanical properties of cell walls in sufficient detail. We describe a vertex-element model which resolves individual cells and includes anisotropic non-linear viscoelastic mechanical properties of cell walls and cell division whilst still being computationally efficient. We show that detailed consideration of the cell walls in the plane of a 2D simulation is necessary when cells have large aspect ratio, such as those in the root elongation zone of Arabidopsis thaliana, in order to avoid anomalous transverse swelling. We explore how differences in the mechanical properties of cells across an organ can result in bending and how cellulose microfibril orientation affects macroscale growth. We also demonstrate that the model can be used to simulate growth on realistic geometries, for example that of the primary root apex, using moderate computational resources. The model shows how macroscopic root shape can be sensitive to fine-scale cellular geometries
Hybrid vertex-midline modelling of elongated plant organs
We describe a method for the simulation of the growth of elongated plant organs, such as seedling roots. By combining a midline representation of the organ on a tissue scale and a vertex-based representation on the cell scale, we obtain a multiscale method, which is able to both simulate organ growth and incorporate cell-scale processes. Equations for the evolution of the midline are obtained, which depend on the cell-wall properties of individual cells through appropriate averages over the vertex-based representation. The evolution of the organ midline is used to deform the cellular-scale representation. This permits the investigation of the regulation of organ growth through the cell-scale transport of the plant hormone auxin. The utility of this method is demonstrated in simulating the early stages of the response of a root to gravity, using a vertex-based template acquired from confocal imaging. Asymmetries in the concentrations of auxin between the upper and lower sides of the root lead to bending of the root midline, reflecting a gravitropic response
A patch-based approach to 3D plant shoot phenotyping
The emerging discipline of plant phenomics aims to measure key plant characteristics, or traits, though as yet the set of plant traits that should be measured by automated systems is not well defined. Methods capable of recovering generic representations of the 3D structure of plant shoots from images would provide a key technology underpinning quantification of a wide range of current and future physiological and morphological traits. We present a fully automatic approach to image-based 3D plant reconstruction which represents plants as series of small planar sections that together model the complex architecture of leaf surfaces. The initial boundary of each leaf patch is refined using a level set method, optimising the model based on image information, curvature constraints and the position of neighbouring surfaces. The reconstruction process makes few assumptions about the nature of the plant material being reconstructed. As such it is applicable to a wide variety of plant species and topologies, and can be extended to canopy-scale imaging. We demonstrate the effectiveness of our approach on real images of wheat and rice plants, an artificial plant with challenging architecture, as well as a novel virtual dataset that allows us to compute distance measures of reconstruction accuracy. We also illustrate the method’s potential to support the identification of individual leaves, and so the phenotyping of plant shoots, using a spectral clustering approach
Inconsistency in serial choice decision and motor reaction times dissociate in younger and older adults
Intraindividual variability (inconsistency) in reaction time (RT) latencies was investigated in a group of younger (M = 25.46 years) and older (M = 69.29 years) men. Both groups performed 300 trials in 2-, 4-, and 8-choice RT conditions where RTs for decision and motor components of the task were recorded separately. A dissociation was evident in that inconsistency was greater in older adults for decision RTs when task demands relating to the number of choices and fatigue arising from time-on-task were high. For younger persons, a weak trend toward greater inconsistency in motor RTs was evident. The results are consistent with accounts suggesting that inconsistency in neurobiological mechanisms increases with age, and that attentional lapses or fluctuations in executive control contribute to RT inconsistency
Invention of the Catholic Intellectual Tradition: Mission & Identity in Catholic Higher Education
Brown Condor
The true story of an African American pilot, John Robinson, who broke through racial barriers to become a pilot and commander of the Ethiopian Air Force in their 1935 fight for freedom against fascist Italy
Multiscale models in the biomechanics of plant growth
Plant growth occurs through the coordinated expansion of tightly adherent cells, driven by regulated softening of cell walls. It is an intrinsically multiscale process, with the integrated properties of multiple cell walls shaping the whole tissue. Multiscale models encode physical relationships to bring new understanding to plant physiology and development
- …
