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Abstract The emerging discipline of plant phenomics aims

to measure key plant characteristics, or traits, though as yet

the set of plant traits that should be measured by automated

systems is not well defined. Methods capable of recovering

generic representations of the 3D structure of plant shoots

from images would provide a key technology underpinning

quantification of a wide range of current and future physio-

logical and morphological traits. We present a fully automatic

approach to image-based 3D plant reconstruction which rep-

resents plants as series of small planar sections that together

model the complex architecture of leaf surfaces. The ini-

tial boundary of each leaf patch is refined using a level set

method, optimising the model based on image information,

curvature constraints and the position of neighbouring sur-

faces. The reconstruction process makes few assumptions

about the nature of the plant material being reconstructed.

As such it is applicable to a wide variety of plant species and

topologies, and can be extended to canopy-scale imaging. We

demonstrate the effectiveness of our approach on real images

of wheat and rice plants, an artificial plant with challenging

architecture, as well as a novel virtual dataset that allows us to

compute distance measures of reconstruction accuracy. We

also illustrate the method’s potential to support the identifi-
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cation of individual leaves, and so the phenotyping of plant

shoots, using a spectral clustering approach.

Keywords Plant phenotyping · Multi-view reconstruction ·

3D · Level sets

1 Introduction

In recent years, a growing recognition that the tools available

to study the genetic structure of plants (the genotype) have

outpaced those supporting analysis of plant structure and

function (the phenotype) has lead to increased demand for

new plant measurement methods. The emerging discipline of

plant phenomics aims to extract quantitative measurements

of key plant characteristics—traits—from image and sensor

data. The resulting information is vital to efforts to under-

stand plant growth and development and to ensure global

food security in the face of climate change, resource deple-

tion and an increasing population.

While a variety of approaches to plant shoot phenotyping

have been proposed [1–5], there is as yet no clear definition

as to the set of traits that should be sought. Where a set of

traits are recovered [1], extending these traits to other plant

species, and further to the general case of plant phenotyping,

may prove challenging. Individual genetic variations might

affect any aspect of the physical plant. Against this back-

ground, generic measurement and description methods are

particularly valuable: the ability to construct rich descrip-

tions of the 3D structure of plant shoots from images would

underpin quantification of a wide range of current and future

traits [6,7].

Plants, however, provide a particularly challenging sub-

ject, with large amounts of self-occlusion, and, depending on

plant species, leaves that lack the texture necessary to per-
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form robust feature matching, either to separate leaves from

one another, or locate specific leaves across multiple views.

To overcome this, where image-based modelling approaches

are successful, they have often involved user interaction [2].

Automatic methods can be classified as either top-down

or bottom-up. Top-down approaches attempt to simplify the

task by solving a model refinement problem. An existing

model is adjusted to fit the image data, so that the new plant

representation is consistent with what is observed. Quan et

al. [2] and Ma et al. [8] take this approach, obtaining an ideal

leaf model from a single leaf, and then fitting it to all other

leaves in the scene. By adapting an existing model, topo-

logical inconsistency (such as the self-intersection of leaf

surfaces) is avoided, but this comes at the expense of gener-

ality. Alenyà et al. [3] guides the segmentation of laser range

data using planar or curved-quadratic surface models; how-

ever, this approach extends only to the refinement of point

cloud data, without reconstructing leaf surfaces.

Bottom-up methods rely only on the observed pixel data.

Silhouette-based methods [4,9], and approaches derived

from them [1], segment each image independently to iden-

tify the boundary of the object of interest. These regions are

combined to determine the maximum possible object size

consistent with the images presented to the algorithm, the

photo hull [10]. Where the number of input images is high,

the resulting model will be a good approximation to the true

plant structure. However, as the scene becomes increasingly

complex, for example with increasing numbers of leaves,

larger plants, or multiple plants, the discrepancy between

true object and model will increase.

Correspondence-based methods identify feature points

independently in each of a set of images, then match those

features between views. Knowledge of the cameras’ posi-

tions and orientations allow 3D locations of matched features

to be computed. The method in [5] extracts the centre lines

of wheat plants from two orthogonal viewpoints, improving

reliability where single images would fail. This work does

not, however, complete the 3D structure of each plant, pre-

serving only the centre line of each leaf after skeletonisation.

Image-based modelling algorithms are widely applica-

ble to a variety of subjects. Their generality can, however,

become a limitation, where the representations they produce

may be unsuitable for direct use in a given situation. The volu-

metric data structures produced by silhouette-based methods,

for example, are static: the size and position of the voxels

are defined early in the process and are difficult to change.

While measurements of, e.g. height and volume are eas-

ily made from volumetric descriptions, estimating motion,

e.g. of leaves moving in the breeze is extremely difficult.

Similarly, point clouds can be used to calculate density and

distributions of plant material, but cannot immediately be

used, e.g. in leaf phenotyping applications, where a surface-

based representation is required.

This paper describes a fully automatic, bottom-up appr-

oach to image-based 3D plant reconstruction that is applica-

ble to a wide variety of plant species and topologies. The

method is accurate, providing a true representation of the

original plant, and produces data in a form that can support

both trait measurement and modelling techniques such as

forward ray tracing [11]. Our approach is outlined, and dis-

cussed in the context of photosynthesis modelling, in [12].

Here we present the technical details of the method and exam-

ine its ability to support plant phenotyping.

An initial 3D point cloud is first described by a set of

planar patches, each representing a small section of plant

material, usually a segment of leaf. Image noise and the com-

plexity of the plant will, however, typically lead to missing

areas of leaf material, and poorly defined surface bound-

aries. The initial surface estimate then is refined into a more

accurate plant model, where the boundary of each surface

patch is optimised based on the available image information,

and positional information obtained from neighbouring sur-

faces.

The reconstruction process makes few assumptions about

the nature of the plant material being reconstructed; by rep-

resenting each leaf as a series of small planar sections, the

complete leaf surface itself can take any reasonable shape.

While our approach currently assumes plants are generally

green, a modular design to the surface refinement function

means any reasonable appearance model could be used in

place of this. For example, an infra-red camera in a lab envi-

ronment would produce a robust appearance model to use

in place of RGB images. The generality of our technique

allows it to be scaled to scenes involving multiple plants,

and even plant canopies. However, the focus of this paper

is on the accurate reconstruction of single plants of varying

species.

2 Plant reconstruction

2.1 Input point cloud

The reconstruction algorithm described in this paper uses

an initial point cloud estimate as a basis for the growth

of plant surfaces in three dimensions. Numerous software-

and hardware-based techniques exist to obtain point rep-

resentations of objects. We have chosen to make use of

a software-based technique, patch-based multi-view stereo

(PMVS) [13]. This approach reconstructs dense point clouds

from any calibrated image set, and is not restricted to plant

data. However, by including robust visibility constraints, it

is well suited to plant datasets that contain large amounts of

occlusion. Let {X i }
n
i=1 be the set of all points in an input cloud

of size n. We identify the co-ordinate system used by the

point cloud, and the resulting reconstruction, as “world” co-
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ordinates. An individual point p ∈ X in world co-ordinates

is represented as a 3D vector w.

A requirement of both PMVS and our reconstruction

approach is that the intrinsic and extrinsic camera para-

meters be known. We use the VisualSFM [14] system to

perform automatic camera calibration. Any number of arbi-

trary camera positions may be calibrated using VisualSFM,

and calibration is performed quickly. However, as it is based

on SIFT features [15], the approach is not suitable for images

with insufficient texture and feature information. This is par-

ticularly problematic within plant datasets, where leaves may

have few suitable feature points. In our real plant datasets,

the surrounding scene provides an adequate feature set for

correspondence. In our artificial plant dataset, a highly tex-

tured calibration target is used, and in our virtual dataset

camera parameters are extracted automatically without the

need for calibration. We have found in our experiments that

the calibration performed within VisualSFM is sufficiently

accurate to drive PMVS, and our method. Where the intrin-

sic parameters of the camera are known, for example, where

the model and lens are kept constant, it is possible to replace

VisualSFM calibration with a more robust technique, which

may improve accuracy.

We capture Ncam images of the scene from Ncam loca-

tions to obtain a set of images {Ii }
Ncam

i=1 . Associated with each

camera location is a perspective projection matrix, based

on a standard pinhole camera model [16], derived from the

calibration information output by VisualSFM. For a given

world point, there is a perspective projection function, Vi ,

that maps onto a point in a specific camera co-ordinate

frame, given by the 2D vector v. This gives a set of func-

tions {V j (w) : R
3 → R

2}
Ncam

j=1 , where j is the index of the

input image and associated camera geometry. Once in cam-

era co-ordinates, pixel information for a given location is

represented by I j (v).

PMVS makes no assumptions about the nature of the

objects being reconstructed. It is likely that additional points

are contained in X that comprise background or other non-

plant material. Many such points will be removed by our level

set approach; however, for computational efficiency many

can be removed before reconstruction begins.

The point cloud is pre-filtered to remove obvious outliers;

those points that differ greatly from the expected colour of

the plant, or those that appear below the expected location

of the plant. Two filters are applied, first a clipping plane

positioned at the base of the plant is used to remove the

majority of background points on the floor, container, etc.

Second, colour filtering is achieved by examining the pro-

jected pixel values for every point, and removing those that

do not appear green in hue. These filters are meant only as a

conservative first pass, a more sensitive colour-based metric

is used within the speed function during application of the

level set method. The final filtered point cloud X ′ ⊆ X is

used in place of X for the remainder of the reconstruction

process.

2.2 Point cloud clustering

The point cloud representation produced by PMVS contains

no explicit surface description. Methods for the reconstruc-

tion of a surface mesh from a point cloud exist [17,18].

Most, however, construct a single a surface describing the

entire point cloud. Plants contain complex surface geome-

try that encourages the separation of leaves. We also wish

to approach the more general problem of plant reconstruc-

tion, without assuming the connectivity or nature of the plant

leaves is known. Instead, we model plant material as a series

of small planar patches. Patch size is restricted to avoid fitting

surfaces between nearby leaves, and to accurately model the

curved nature of each leaf surface. The filtered point cloud is

first clustered into small clusters of points using a radially-

bounded nearest neighbour strategy [19]. Points are grouped

with their nearest neighbours, as defined by a pre-set dis-

tance, and the method is extended to limit the potential size

of each cluster. More formally, from the filtered cloud we

obtain a set of clusters Ck
Nclus

k=1 in which each cluster contains

at least one point and all clusters are disjoint, so |Ck | > 0,∀k

and Ck ∩ Cl = ∅,∀k 	= l.

This distance used for the nearest neighbour approach is

dependent on the size and resolution of the model being cap-

tured. As PMVS (and laser scanning devices) usually output

points with a consistent density, the distance parameter can

be set once and then remain unchanged between experiments

using the same image capture technique. Reducing this num-

ber will increase the number of planar sections fitted to the

data, increasing accuracy at the cost of decreased algorithmic

efficiency.

Our surface fitting approach begins with an approxima-

tion of the surface that will then be refined. A least-squares

orthogonal regression plane is fitted to each cluster using

singular value decomposition. This best fit plane minimises

the orthogonal distance to each point, providing each cluster

with a centre point c, a normal vector n, and an orthogonal

vector x indicating the rotation about the normal. The vector

x is aligned along the major-principle axis of the point within

the cluster. We then define a set of orthographic projection

functions that project individual world points into each clus-

ter plane, {Ck(w) : R
3 → R

2}
Nclus

k=1 , where Ck represents the

projection into plane k (i.e. the plane associated with cluster

Ck). We say that points projected onto any plane now occupy

planar co-ordinates. Any such point, denoted by the 2D vec-

tor p, can be projected back into world co-ordinates by the

set of functions {Wk( p) : R
2 → R

3}
Nclus

k=1 .

The orthogonal projection in Ck has the effect of flattening

the points in each cluster to lie on their best fit plane, reduc-

ing any noise in individual points, and reducing the surface
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Fig. 1 An overview of the geometrical co-ordinate systems used within

our reconstruction framework. The model is represented in world

co-ordinates, the perspective projection V j maps points in world co-

ordinates into any given camera view i . The orthogonal projection Ck

maps points from world co-ordinates into any given surface patch k,

which is projected back using Wk

fitting algorithm to a 2D problem. Point and mesh surfaces

generated on a cluster plane will have an associated world

position that can be output as a final 3D model. An overview

of the geometric projections in use within our reconstruction

approach can be seen in Fig. 1.

2.3 Surface estimation

An initial surface estimate is constructed by calculating the

α-shape of the set of 2D points in planar co-ordinates. An

α-shape is a generalisation of the convex hull for a set of

points, and is closely related to the commonly used Delau-

nay triangulation. For the incomplete leaf surfaces that exist

within the input cloud, the Delaunay triangulation and convex

hull represent an over-simplification of the complex bound-

ary topology of the clusters. For a point set S, Edelsbrunner

[20] defines the concept of a generalised disk of radius 1/α,

with an edge between two points in S being included in the

alpha shape if both points like on the boundary of the gen-

eralised disk, and that disk contains the entire point set. The

set of α-shapes, produced when varying alpha, represent a

triangulation of each surface at varying levels of detail. In

this work, a negative value of α is used, with larger nega-

tive values removing larger edges or faces. The α value can

be tuned for a given data set, to preserve the shape of the

boundary of each reconstructed point set.

2.4 Boundary optimisation

The α-shapes computed over each cluster form an initial esti-

mate of the location and shape of the plant surface. The

challenging nature of plant datasets in multi-view recon-

struction means that in many instances the initial point cloud

estimate will be inaccurate or incomplete. The initial surface

boundaries based on these points will require further optimi-

sation to adequately reflect the true shape of each leaf surface.

Missing leaf surfaces should be reconstructed, and overlap-

ping shapes should be optimised to meet at a single boundary.

Many methods, such as active contours [21], parameterise the

boundary shape before attempting this optimisation. How-

ever, such approaches are ill suited to the complex boundary

conditions produced by α-shapes. For any value of α < 0, the

surface may contain holes or disjoint sections, and as such

many surfaces will change topology during any boundary

optimisation process.

Tracking of such complex boundaries can be achieved

using the level set method [22,23]. The method defines a 3D

function ϕ that intersects the cluster plane, with a single level

set being initialised for each surface patch. ϕ is represented

as a signed distance function, initialised such that negative

values lie within our α-shape boundary, and positive values

occur outside. Thus, the boundary itself is defined as the set

of all points in ϕ that intersect the cluster plane, given as:

Ŵ = {(x, y)|ϕ(x, y) = 0}. (1)

A speed function determines the rate of change of ϕ. It may

be based on both global and local parameters, and will act to

grow or shrink the boundary Ŵ as necessary to fit the under-

lying data. The change in ϕ, based on a speed function v, is

defined as

∂ϕ

∂t
= −v · |�ϕ|, (2)

where �ϕ is the gradient of the level set function at a given

point, which we calculate through Godunov’s upwinding

scheme. The speed function is defined as

v = vcurve + vimage + vinter, (3)

where vcurve is a measure of the local curvature, calculated

using a central finite difference approximation

vcurve = ω ·
ϕxxϕ

2
x − 2ϕyϕxϕxy + ϕyyϕ

2
x

(ϕ2
x + ϕ2

y)
3/2

. (4)
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The curvature term encourages the boundary of the level set

to remain smooth. The weighting ω is required to prevent

curvature from dictating the movement of the front, in cases

where the boundary is already sufficiently smooth.

The image term, vimage, references colour information in

the input images to ascertain whether the projection of the

planar surface lies over regions with a high likelihood of

containing leaf material. To achieve this, the function ϕ is

discretized and uses the planar co-ordinate system, each pla-

nar point p maps to a position on ϕ, and any point on ϕ will

have an associated planar position. By performing consecu-

tive projections, we are able to examine the relevant location

in any image of a cluster plane position. Such a projection

is given as (Vi ◦ Wk)( p) : R
2 → R

2, where k is the clus-

ter index, and i is the camera index. Not every image will

provide a helpful view of every cluster, they may be out of

the camera’s field of view, or seen at an oblique angle. One

reference view is chosen from which to obtain colour infor-

mation, as follows. We choose a reference image IR ∈ I that

represents a calculated “best view” of a planar surface. Selec-

tion of the reference view begins by projecting each cluster

into each camera view. Only the interiors (triangular faces)

of each α-shape are projected using a scan-line rasterisation

algorithm. Attached to each projected position is a z depth,

calculated as the third component output from the function

Ci (w) when using homogenous co-ordinates. This z depth

represents the distance that the projected point lies from the

camera’s image plane, and can be used to sort clusters that

project onto the same location. Projections with the lowest

z value are seen in front of, so occlude, those with higher z

values.

The projection locations and z depths for all clusters

are analysed using a series of z-buffer data structures, one

z-buffer associated with each input image. We define the z-

buffers as a set {Zi }
Ncam

i=0 , where each buffer contains pixel

locations in camera co-ordinates that map directly to the cor-

responding image. For each image location, any cluster that

can be seen in (i.e. projects onto) that point is recorded in the

z-buffer. A given position Zi (v) contains a depth sorted list

of all clusters that project into that camera co-ordinate, i.e.

Zi (v) = (C0, . . . , Cn).

It is desirable to select camera views that contain as little

interference between clusters as possible. For a given z-buffer

j , and a given cluster i , we can calculate the following mea-

sure:

V
clear
j (i) = |{v|i ∈ Z j (v) ∧ |Z j (v)| = 1}|. (5)

The clear pixel count represents a measure of the num-

ber of pixels each cluster projects into for a given image.

This value reflects both the proximity of the cluster to the

camera plane, and the angle of incidence between the cam-

era view and the cluster plane. The clear pixel counts for

all projections of a given cluster i are normalised to the

range [0, 1]. This measure does not include pixel positions

shared by other clusters, to avoid heavily occluded views

affecting the normalised value. The amount of occlusion

for each cluster i , in a given z-buffer j is calculated as:

V
occluded
j (i) =

|{v|i ∈ Z j (v)\{Z j (v)(1)} ∧ |Z j (v)| > 1}|

|{v|i ∈ Z j (v)}|
,

(6)

V
occluding
j (i) =

|{v|i ∈ Z j (v)\{Z j (v)(n)} ∧ |Z j (v)| > 1}|

|{v|i ∈ Z j (v)}|
.

(7)

where Zi (v)(k) is the kth ordered element of Z j (v). Voccluded
j

(i) can be read as “the percentage of cluster i that projects

into z-buffer j behind at least one other cluster.” Similarly,

V
occluding
j (i) can be read as “the percentage of cluster i that

projects into z-buffer j in front of at least one other cluster.”

Thus, a combination of normalised clear pixel count, occlu-

sion and occluding percentages can be used to sort images

in terms of view quality. A reference image, IR , is chosen

where

R = argmax j (V
clear
j (i)(1−V

occluded
j (i))(1−V

occluding
j (i))).

(8)

Penalising views that present occlusion with respect to

each surface will help ensure that self-occlusion is prevented

from affecting the reconstruction accuracy, only a single view

of each surface needs to have an unobscured view for recon-

struction of that patch to be successful.

When referencing pixel values using the image IR , we use

a normalised green value to measure the likelihood of leaf

material existing at that location,

N j (v) =
I j (v)(green)

I j (v(red) + I j (v(green) + I j (v(blue))
. (9)

We can assume that normalised green values will be higher in

pixels containing leaf material, and lower in pixels contain-

ing background. Where lighting conditions remain consistent

over an image set, we can also assume that distribution of nor-

malised green values are the same over the each image in I .

However, between different image sets we cannot assume

that the properties of the normalised green values are known.

These properties must be ascertained before Ni can be used

to contribute to the vimage term in the speed function. We sam-

ple from all images those pixels that are projected into by the

α-shapes, and use Rosin’s unimodal thresholding approach
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[24] to threshold below the normalised green peak that is

observed. Using this threshold, the mean and standard devi-

ation of the peak are calculated, and used to produce an

image speed function centred around the calculated thresh-

old t , with a spread based on the standard deviation of the

peak:

vimage =

⎧

⎨

⎩

max
(

−1,
N j (v)−t

2σ

)

, N j (v) < t

min
(

+1,
N j (v)+t

2σ

)

, N j (v) ≥ t
, (10)

where t is the threshold calculated using Rosin’s method,

and σ is the standard deviation of the N j peak. A width of

2σ was chosen as a value that characterises the spread of the

normalised green values.

The final component of the speed function, vinter, works

to reshape each surface based on the location and shape of

nearby clusters. As each cluster may have different normal

orientations, it is challenging to calculate their 3D intersec-

tions in terms of 2D positions in planar co-ordinates. Indeed,

two nearby clusters that could be considered as overlapping,

may not intersect in world co-ordinates. Instead we project

each planar position into IR , and examine the interactions in

the 2D camera co-ordinate system.

Any overlapping projections are calculated by main-

taining z-buffers that update as each region reshapes. The

function vinter is calculated such that each cluster in Z j (x) is

penalised except for the front-most cluster. Thus, for a cluster

i , the function is calculated as:

vinter =

{

p − vimage, Z j (v)1 	= i

0, otherwise
, (11)

where p is a small negative value such that the level set

boundary Ŵ shrinks at this location. Note that the subtraction

of vimage results in the image component being ignored where

clusters are occluded.

The complete speed function is used to update each dis-

crete position on the level set function ϕ. This process must

be repeated until each cluster boundary has reshaped to ade-

quately fit the underlying image data. The speed function

will slow significantly as the boundary approaches an opti-

mal shape. Where a level set boundary no longer moves with

respect to the reference image (does not alter the number of

projected pixels), we mark this cluster as complete and dis-

continue level set iterations. Any level sets that do not slow

significantly will continue until a maximum time is elapsed,

a parameter that can be set by the user. We typically use a

value of 100–200 iterations as a compromise between com-

putational efficiency and offering each level set adequate time

to optimise.

2.5 Model output

Once all clusters have been iterated sufficiently, each surface

triangulation must be re-computed. The level set function

provides a known boundary that was not available during the

original surface estimation. This can be used to drive a more

accurate meshing approach that will preserve the contours

of each shape. We use constrained Delaunay triangulation

for this task [25]. A constrained triangulation will account

for complex boundary shape when producing a mesh from a

series of points; however, it will not over-simplify the bound-

ary by fitting surfaces across concave sections, and can retain

holes in the surface if required. Points are sampled from the

boundary of each surface, and a constrained triangulation

is fitted. This process will automatically generate additional

points, where required, within the shape itself. As each point

in the new triangulation exists in planar co-ordinates, they

can be easily back-projected into world co-ordinates to be

output in a 3D mesh format.

3 Experimental results

In this section, we present results obtained when applying our

reconstruction approach to multiple views of single plants.

Verification of our approach is achieved using a novel virtual

dataset, in which a model rice plant is rendered from multi-

ple viewpoints to generate artificial colour images, which are

then treated in the same way as a real-world image set. This

approach allows the reconstructed plant to be directly com-

pared to the artificial target object, an impossible prospect

when working with real-life plants, as no such ground truth

can exist.

We have tested our reconstruction methods on datasets

obtained from real rice and wheat plants, as well as an on

real images of an artificial plant that exhibits a very differ-

ent architecture. Images were captured using DSLR cameras

with 35mm lenses, at 8 megapixel resolution. The number,

and nature of the images were left to the user to decide given

the subject in question, though we recommend more than 30

images surrounding the subject for a single plant. For the

rice and wheat datasets, a single moving camera was used,

and no special consideration was given to the environment in

which the plants were imaged, beyond avoiding large areas

of green colour in the background. The rice dataset was cap-

tured in an indoor environment, the wheat in a glass house.

These environments provide complex backgrounds, which

raise additional challenges, but the plants can still be recon-

structed using our methods. The artificial plant was captured

using three fixed-camera installations, and the plant rotated

using a turntable. In this installation the turntable was rotated

by hand in approximately 10–20◦ increments.
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Fig. 2 Reconstruction of rice, wheat and the artificial plant images. (Top row) Sample images of the rice, wheat and artificial plant datasets. (Middle

row) Meshed reconstructions of each plant surface using our approach. (Bottom row) Coloured representations of each plant once segmented using

spectral clustering

In our experience a fixed-camera installation using a

turntable often provides more reliable reconstructions than a

moving camera installation. It is challenging to determine the

best set of images for a given plant using a moving camera,

particularly in an environment where other obstacles restrict

the positions from which images can be captured. The lack

of a robust protocol for image capture can lead to images

being poorly distributed around a plant, missing some sec-

tions and increasing noise. The lack of background texture in

the turntable installation information usually reduces the time

required to capture the initial point cloud, where time is not

spent reconstructing unnecessary background pixels that will

simply be discarded later in the process. With no background,

however, a textured target is required to ensure accurate cal-

ibration. This adds a further requirement that each camera

view must see a sufficient proportion of the calibration target,

meaning that as the height of the camera position is increased,

the angle of view must also be increased. For taller plants this

might mean a lack of adequate views of the uppermost leaves,

and poor reconstructions in those areas. We anticipate that

an automated turntable would solve this problem, where cali-

bration could be accurately performed before reconstruction,

and no textured target would be required once the plants were

being captured.

Figure 2 shows the result of applying our reconstruction

approach to the three image sets containing wheat, rice and

the artificial plant. Quantitative evaluation of the effective-

ness of any 3D shoot reconstruction is challenging due to a
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Fig. 3 Boundary refinement using the level set method. (Top left) An

initial surface estimate of a section of the wheat dataset. (Top middle)

A refined version of the wheat model after a level set was applied to

each patch. (Bottom left) An initial surface estimate of a section of the

rice dataset. (Bottom middle) A refined version of the rice model after

a level set was applied to each patch. (Top right) Two example patches,

viewed from the same position as the reference image IR . (Bottom right)

A different orientation of the same two patches

lack of ground truth models for comparison. Here we offer

a qualitative evaluation of the benefits and shortcomings of

our approach using these plants, followed by a quantitative

evaluation using the virtual rice dataset.

Results on all three datasets showed that the initial surface

estimate, obtained by calculating an α-shape over each clus-

ter, will naturally reproduce any flaws present in the PMVS

point cloud. Most notable are the lack of point information in

areas of poor texture, and noise perpendicular to the leaf sur-

face, where depth has not been adequately resolved. These

issues can be caused by the heavy self-occlusion observed in

more dense plants or canopies, but are often caused in even

simple datasets by a lack of image features in the centre of

leaves. The artificial plant contains much larger leaves, how-

ever, texture is generally sufficient to provide a reliable set

of points over each leaf surface.

Depth noise is significantly reduced by the use of best fit

planes over small clusters, where all points are projected onto

a single surface. However, the boundary of each surface is

a function of the parameters used to create the α-shape, and

the quality of the underlying data. As such, we can expect

the α-shape boundaries to be a poor representation of the

true leaf shape. With this in mind, we would characterise a

successful reconstruction as one that significantly improves

upon the initial surface estimate, through the optimisation of

the each surface boundary.

Notable characteristics of the α-shape boundaries in both

datasets are significant overlap between neighbouring clus-

ters, and frequent missing surface sections (Fig. 3). Figure 3

also shows the refined boundaries after the level set method

has been applied, in which missing sections are filled, and

overlapping surfaces have been reduced. The results in Fig. 3

are representative of the results over all three datasets.

While the refined surfaces represent an improvement over

both the initial point cloud, and the initial α-shape surface,

there are still notable areas for improvement. By treating

each section of leaf as an individually orientated plane, each

plane orientation is susceptible to the error within the input

cloud. Since each boundary is refined from one reference

view, incorrect orientation of the best fit plane might cause the

surface boundary to be incorrectly aligned with the image, or

neighbouring clusters. Consider Fig. 3 (right), in which two

patches have been reconstructed in close proximity. When

viewed from the reference view in which boundary refine-

ment occurred, the boundaries of neighbouring patches are

in good agreement. A rotated view of the same surfaces,

however, shows that misaligned normal orientation can lead

to gaps between neighbouring surfaces. Conversely, if the

right-hand image had been chosen as IR , the level set equa-

tion would increase the size of both boundaries, and overlap

would be observed in the left hand view.

In reality, for many clusters with very similar orientations

these gaps will be negligible; as the clusters are limited in

size, the distance between neighbouring plane orientations

will be small, and the resulting gaps between boundaries will

also be small. We have quantified the low level of discrep-
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Fig. 4 (Top left) The original rice plant model, based on the plant

reconstructed in Fig. 3. Vertices are coloured based on their mm dis-

tance to the nearest point on the reconstruction. (Bottom left) Histogram

of smallest distances from each vertex on the model to vertices on

the reconstruction. (Top right) The reconstruction produced by our

approach. Vertices are coloured based on their mm distance to the near-

est point on the original model. (Bottom right) Histogram of smallest

distances from each vertex on the reconstruction to vertices on the model

ancy between an input model and the reconstruction below.

We anticipate that further work on smoothing the normal

orientations of neighbouring clusters or merging neighbour-

ing clusters into a single curved leaf model will continue to

improve results in this regard: this will be a focus of upcom-

ing research.

An additional dataset was created based on the plant used

in the rice dataset. The rice plant was first manually cap-

tured and modelled using the point cloud created by PMVS,

and 3D graphics software [26,27]. This is a time consum-

ing and subjective process, and should not be viewed as a

suitable alternative to automatic reconstruction. However, it

is possible to produce an easily quantifiable ground truth

model that can be used as a target for automated reconstruc-

tion. This virtual plant was textured and coloured to emulate

the original plant leaves. Finally, 40 distinct camera views

of the model were rendered, simulating an image capture

system moving around a static plant. The resulting dataset

can then be reconstructed in the same manner as real-world

data, while retaining the ability to compare the reconstruc-

tion with the original virtual plant, in particular keeping the

same co-ordinate system and scale. The original model, and

our reconstruction can be seen in Fig. 4.

To quantify the similarity between the original model and

the reconstruction, we use the Hausdorff distance, the great-

est distance from any point on either mesh, to the nearest

point on the other. This concept is extended in [28] to include

a measure of the mean distance between two meshes.

A visual representation of these measures can be seen in

Fig. 4, in which each vertex is coloured based on the distance

to the nearest point on the opposing mesh. This provides a

visual clue as to our algorithm performance. The arbitrary

world units used within the reconstruction were converted

into mm measurements through the use of a calibration target

of known size.

The furthest distance between points on both meshes is

∼4.5 mm; however, the average distances between each mesh

are significantly lower. The complete model is approximately

48 cm tall. These one-sided measurements provide additional

information, by distinguishing between the distances in either
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Table 1 Distance measurements between the model plant and the

results of the reconstruction approach

Vertex distance (mm) Model plant Reconstruction

Minimum 0 0

Maximum 4.576 4.496

Mean 0.289 0.411

RMS 0.379 0.534

Hausdorff distance (mm) 4.576

The two-sided Hausdorff distance is the maximum of both single-sided

measurements

direction. Increasing distance from the model plant to the

reconstruction indicates areas of the model that have not been

accurately reconstructed. This is most likely where missing

points in the initial cloud and surface estimates are not ade-

quately refined through the level set method. In this case, the

low mean and maximum distances show that these regions

have been reconstructed successfully. Indeed, 99 % of the

vertices in the model are within 1.2 mm of the reconstructed

model (Table 1).

In the other direction, higher distances from the recon-

struction to the original model represent areas that have

deviated from the true position of the plant. This could be

caused by a number of factors, such as misalignment between

the orientation of a surface plane and the original surface, or

surface boundaries extending beyond the true boundary of the

leaves, possibly due to occlusion. The maximum and mean

distances for the reconstruction remain low, and show that

the reconstruction is a good reflection of the true model.

The mean distance and RMS error for this single-sided

measure is higher than the reverse, which we believe may rep-

resent current technical limit of our approach. The distances

around the boundaries of many surfaces appear slightly

higher than in the centre, where the level sets can over-extend

the leaf edge. This is a limitation within the level set speed

function, but for the distances observed this usually repre-

sents an increase of size, outwards, of less than a pixel on

average when projected into the reference image. This sub-

pixel accuracy is not resolved by the speed function of the

level set method that we use. An immediate improvement

could be observed by simply increasing the resolution of the

input image set; however, this would add significant compu-

tational overhead.

Our approach begins by clustering points based on a seg-

mentation radius. During our experiments we used a radius

of 0.03 world units, which was determined empirically. Our

experience suggests that the approach is robust to changes in

this value; however, in an effort to justify this choice we have

tested the reconstruction accuracy on our virtual dataset as

this parameter is changed (Fig. 5). The segmentation radius

is a primary factor in determining the size of the surface

Fig. 5 How accuracy of our reconstruction approach on the virtual

dataset varies with size of the surface patches. The segmentation radius

determines the size of the clusters obtained during point cloud clus-

tering. Hausdorff distance here is measured relative to the size of the

virtual plant model, lower is better

Table 2 Details and processing times for the datasets evaluated in this

section

Dataset Cluster count Image count Time taken

Rice 1606 36 7 m 33 s

Wheat 1486 62 23 m 59 s

Artificial 384 58 34 m 10 s

Model rice 517 40 2 m 11 s

Each level set was iterated to a maximum of 100 times, or until it halted

patches that are produced, so a value should be chosen that

is appropriate for the size of the planar regions of the leaves.

Very small surface patches will cause the curvature term to

become dominant during the level set iteration step, increas-

ing the distance error. Very large patches will over-simplify

the plant structure, also increasing the error. Values of 0.02

and 0.03 are seen to be effective, but note that other values

still produce an error measure that is a fraction of 1 % of the

size of the model.

The performance of our approach is closely related to the

size of the image set, and the size of the model being evaluated

(the number of patches, and their size). For small datasets,

reconstruction usually takes a matter of minutes. For complex

datasets, particularly those with more than 50 input images,

we can expect performance to decrease. Table 2 shows details

and processing times for the datasets evaluated in this sec-

tion. Tests were run on an Intel Core i7 3820 machine. The

algorithms detailed here are suitable for GPU parallelisation

in the future if further optimisation is required.

In their raw form, these models represent a flexible way of

measuring higher level plant traits. Any plant feature that can

be directly mapped to an equivalent feature in a 3D model,
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can be captured. Thus, these models can be used for plant

size, surface area, distributions of leaf angles, etc. More

advanced measures specific to some areas of plant pheno-

typing can also be measured, such as leaf area index that

is often used in photosynthetic modelling. However, given

the output of this technique is a 3D model only, which mea-

sures are used and what approach is used to measure them

is left to the end-user’s discretion. The models are also well

suited to surface-based modelling approaches such as ray

tracing [11]. For our approach to be suited to more general

plant phenotyping, it is necessary to extract lower level phe-

notypic information about each plant, such as number and

angle of leaves. Obtaining such measurements reliably for a

variety of plant species is a goal for future research; how-

ever, as a proof of concept we were eager to show that the

patch-based system we have employed can in principle be

used to power lower level phenotyping. A spectral cluster-

ing approach offers a robust way to cluster surface patches

into contiguous blocks, often leaves. We use the normalised

spectral clustering approach outlined in [29]. Spectral clus-

tering operates on an undirected graph G = (V, E), where

in this case each vertex represents a single surface patch in

the plant model. Edges between patches are weighted based

on the distance between their centre points, but distorted to

favour those that are closer parallel to the orientation of a

plane, rather than orthogonal to it. More formally

wi→ j = exp

{

−
d2

p

2σ 2
p

−
d2

o

2σ 2
o

}

, (12)

where dp = ni · (c j − ci ) and do = ‖(c j − dpni ) − ci‖ with

‖ · ‖ being Euclidean distance in three dimensions, ci and

c j the centres of the two patches, and ni the unit normal to

patch i . To make weights symmetric, we set weight wi, j =

min(wi→ j , w j→i ).

The weighted adjacency matrix of G is the matrix W =

(wi, j )i, j=1,...,n , which we convert into a k-nearest neighbour

representation by setting all but the k-closest neighbours of

each vertex to zero. From this matrix we can calculate the

degree matrix D, a diagonal matrix with degrees along the

diagonal calculated as di =
∑n

j=1 wi, j . Finally, the nor-

malised laplacian matrix L can be calculated as:

L = I − D−1W. (13)

The eigenvectors of L that correspond to the k smallest

eigenvalues are clustered row-wise using k-means++ [30].

The clusters assigned to each row are then mapped directly

to the surface patches, resulting in a final segmentation.

The results of our initial clustering approach can be seen

in Fig. 2. When leaves are well defined there is often strong

separation between groups of patches into either complete

leaves, or large sections of the same leaf. Towards the bases of

each plant as the boundaries become increasingly hard to dis-

tinguish, performance decreases. It should be noted, however,

that this is far from a complete solution, and is meant only to

demonstrate the possibility of our patch-based model being

used to extract more complex phenotypic measurements.

The number of clusters k is currently determined empiri-

cally, along with the standard deviations σ 2
p and σ 2

o used

to calculate the distance between patches. Further research

will explore the possibility of improving the segmentation

of these models, including the automatic determination of

an optimal k, and an improved distance metric that includes

patches that include boundaries in close proximity.

4 Conclusions

The recovery of accurate 3D models of plants from colour

images, and their associated phenotypic traits, is a challeng-

ing topic. Even single plants represent a crowded scene in

the sense of [13], and reconstructing objects with this level

of complexity is an active research area, both within and

outside the field of Plant Phenotyping. Plants often contain

high degrees of self-occlusion, with the level of occlusion

varying greatly even within a species. Individual leaves are

also hard to identify, often exhibiting similarity, and lacking

sufficient texture for many of the reconstruction approaches

that see widespread use. For these reasons many existing

plant reconstruction techniques have focused on the proper-

ties of plants that can be easily identified, in particular their

silhouettes. Silhouette-based approaches have proven robust

when reconstructing smaller, less detailed plants; however,

performance will often deteriorate in the presence of increas-

ing occlusion, as a plant ages, or multiple plants are imaged

together. In our approach, where each surface is seen clearly

from at least one camera, effective reconstruction can be per-

formed.

The approach presented here attempts to address these

issues by developing each leaf segment individually, auto-

matically selecting an image that is likely to contain the

necessary information for reconstruction. In essence, the

problem of occlusion is reduced by choosing an image that

has a clear view of each target surface. The problem of low

texture is addressed through detailed analysis of the colours

present in the image. Avoiding the use of texture improves

performance of this approach on plants, when compared

to standard feature-correspondence methods. The level set

method re-sizes and re-shapes each patch as necessary to

maximise its consistency with the reference image, as well

as the consistency between nearby patches that might over-

lap. By driving the reconstruction without regard for leaves

or plant structure, the approach remains general, and is flex-

ible enough to be applied to a wide variety of plant species

with differing leaf shape and pose. In its current form the
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mesh representation produced provides a detailed model of

the surface of a viewed plant that can be used in both mod-

elling tasks and for shoot phenotyping.

This general approach, however, makes the calculation of

some plant traits less intuitive. General measurements such

as surface area or height are easily obtained, but more plant-

specific traits such as leaf count and angle cannot easily

be measured on a patch-based model. To address this issue

we have demonstrated that a spectral clustering approach is

well suited to the task of grouping neighbouring patches,

thus extending this approach to whole leaves. We anticipate

that further work on leaf segmentation will yield many more

useful plant trait measurements, without the loss of species

generality.
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