45 research outputs found

    Calcineurin Interacts with PERK and Dephosphorylates Calnexin to Relieve ER Stress in Mammals and Frogs

    Get PDF
    Background: The accumulation of misfolded proteins within the endoplasmic reticulum (ER) triggers a cellular process known as the Unfolded Protein Response (UPR). One of the earliest responses is the attenuation of protein translation. Little is known about the role that Ca 2+ mobilization plays in the early UPR. Work from our group has shown that cytosolic phosphorylation of calnexin (CLNX) controls Ca 2+ uptake into the ER via the sarco-endoplasmic reticulum Ca 2+-ATPase (SERCA) 2b. Methodology/Principal Findings: Here, we demonstrate that calcineurin (CN), a Ca 2+ dependent phosphatase, associates with the (PKR)-like ER kinase (PERK), and promotes PERK auto-phosphorylation. This association, in turn, increases the phosphorylation level of eukaryotic initiation factor-2 a (eIF2-a) and attenuates protein translation. Data supporting these conclusions were obtained from co-immunoprecipitations, pull-down assays, in-vitro kinase assays, siRNA treatments and [ 35 S]-methionine incorporation measurements. The interaction of CN with PERK was facilitated at elevated cytosolic Ca 2+ concentrations and involved the cytosolic domain of PERK. CN levels were rapidly increased by ER stressors, which could be blocked by siRNA treatments for CN-Aa in cultured astrocytes. Downregulation of CN blocked subsequent ER-stress-induced increases in phosphorylated elF2-a. CN knockdown in Xenopus oocytes predisposed them to induction of apoptosis. We also found that CLNX was dephosphorylated by CN when Ca 2+ increased. These data were obtained from [c 32 P]-CLN

    Mitochondria and the central nervous system: searching for a pathophysiological basis of psychiatric disorders

    Full text link

    Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia

    No full text
    Mitochondrial permeability transition (PT) is a phenomenon induced by high levels of matrix calcium and is characterized by the opening of the PT pore (PTP). Activation of the PTP results in loss of mitochondrial membrane potential, expansion of the matrix, and rupture of the mitochondrial outer membrane. Consequently, PT has been implicated in both apoptotic and necrotic cell death. Cyclophilin D (CypD) appears to be a critical component of the PTP. To investigate the role of CypD in cell death, we created a CypD-deficient mouse. In vitro, CypD-deficient mitochondria showed an increased capacity to retain calcium and were no longer susceptible to PT induced by the addition of calcium. CypD-deficient primary mouse embryonic fibroblasts (MEFs) were as susceptible to classical apoptotic stimuli as the WT, suggesting that CypD is not a central component of cell death in response to these specific death stimuli. However, CypD-deficient MEFs were significantly less susceptible than their WT counterparts to cell death induced by hydrogen peroxide, implicating CypD in oxidative stress-induced cell death. Importantly, CypD-deficient mice displayed a dramatic reduction in brain infarct size after acute middle cerebral artery occlusion and reperfusion, strongly supporting an essential role for CypD in an ischemic injury model in which calcium overload and oxidative stress have been implicated

    Oxidative stress parameters of L929 cells cultured on plasma-modified PDLLA scaffolds

    No full text
    WOS: 000291218200006PubMed: 21312003Oxidative stress may produce high level of reactive oxygen species (ROS) following cell exposure to endogenous and exogenous factors. Recent experiments implicate oxidative stress as playing an essential role in cytotoxicity of many materials. The aim of this study was to measure intracellular malondialdehyde (MDA), advanced oxidation protein product (AOPP) levels, and superoxide dismutase (SOD) activities of L929 fibroblasts cultured on PDLLA, polyethylene glycol (PEG), or ethylenediamine (EDA) grafted PDLLA by plasma polymerization method. Cell proliferation on these scaffolds was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The study showed that MDA, AOPP levels, and SOD activities in L929 fibroblast cells cultured on all scaffolds were significantly different compared to the control group and each other. The highest MDA (0.42 +/- 0.76 nmol/mg protein), AOPP (14.99 +/- 4.67 nmol/mg protein) levels, and SOD activities (7.49 +/- 3.74 U/mg protein) were observed in cells cultured on non-modified scaffolds; meanwhile, the most cell proliferation was obtained in EDA-modified scaffolds (MDA 0.15 +/- 0.14 nmol/mg protein, AOPP 13.12 +/- 3.86 nmol/mg protein, SOD 4.82 +/- 2.64 U/mg protein). According to our finding, EDA- or PEG-modified scaffolds are potentially useful as suitable biomaterials in tissue engineering
    corecore