1,403 research outputs found

    Structural and Magnetic Properties of Trigonal Iron

    Full text link
    First principles calculations of the electronic structure of trigonal iron were performed using density function theory. The results are used to predict lattice spacings, magnetic moments and elastic properties; these are in good agreement with experiment for both the bcc and fcc structures. We find however, that in extracting these quantities great care must be taken in interpreting numerical fits to the calculated total energies. In addition, the results for bulk iron give insight into the properties of thin iron films. Thin films grown on substrates with mismatched lattice constants often have non-cubic symmetry. If they are thicker than a few monolayers their electronic structure is similar to a bulk material with an appropriately distorted geometry, as in our trigonal calculations. We recast our bulk results in terms of an iron film grown on the (111) surface of an fcc substrate, and find the predicted strain energies and moments accurately reflect the trends for iron growth on a variety of substrates.Comment: 11 pages, RevTeX,4 tar'd,compressed, uuencoded Postscript figure

    Dirac gaugino as leptophilic dark matter

    Full text link
    We investigate the leptophilic properties of Dirac gauginos in an R--symmetric N=2 supersymmetric model with extended gauge and Higgs sectors. The annihilation of Dirac gauginos to leptons requires no chirality flip in the final states so that it is not suppressed as in the Majorana case. This implies that it can be sizable enough to explain the positron excess observed by the PAMELA experiment with moderate or no boost factors. When squark masses are heavy, the annihilation of Dirac gauginos to hadrons is controlled by their Higgsino fraction and is driven by the hZhZ and W+WW^+W^- final states. Moreover, at variance with the Majorana case, Dirac gauginos with a non-vanishing higgsino fraction can also have a vector coupling with the ZZ gauge boson leading to a sizable spin--independent scattering cross section off nuclei. Saturating the current antiproton limit, we show that Dirac gauginos can leave a signal in direct detection experiments at the level of the sensitivity of dark matter searches at present and in the near future.Comment: 24 pages, 10 figures, typos corrected, final version published on JCA

    Breaking of general rotational symmetries by multi-dimensional classical ratchets

    Full text link
    We demonstrate that a particle driven by a set of spatially uncorrelated, independent colored noise forces in a bounded, multidimensional potential exhibits rotations that are independent of the initial conditions. We calculate the particle currents in terms of the noise statistics and the potential asymmetries by deriving an n-dimensional Fokker-Planck equation in the small correlation time limit. We analyze a variety of flow patterns for various potential structures, generating various combinations of laminar and rotational flows.Comment: Accepted, Physical Review

    ATIC and PAMELA Results on Cosmic e^\pm Excesses and Neutrino Masses

    Get PDF
    Recently the ATIC and PAMELA collaborations released their results which show the abundant e^\pm excess in cosmic rays well above the background, but not for the \bar{p}. Their data if interpreted as the dark matter particles' annihilation imply that the new physics with the dark matter is closely related to the lepton sector. In this paper we study the possible connection of the new physics responsible for the cosmic e^\pm excesses to the neutrino mass generation. We consider a class of models and do the detailed numerical calculations. We find that these models can natually account for the ATIC and PAMELA e^\pm and \bar{p} data and at the same time generate the small neutrino masses.Comment: 7 pages, 5 figures. Published version with minor corrections and more reference

    Dark Matter attempts for CoGeNT and DAMA

    Full text link
    Recently, the CoGeNT collaboration presented a positive signal for an annual modulation in their data set. In light of the long standing annual modulation signal in DAMA/LIBRA, we analyze the compatibility of both of these signal within the hypothesis of dark matter (DM) scattering on nuclei, taking into account existing experimental constraints. We consider the cases of elastic and inelastic scattering with either spin-dependent or spin-independent coupling to nucleons. We allow for isospin violating interactions as well as for light mediators. We find that there is some tension between the size of the modulation signal and the time-integrated event excess in CoGeNT, making it difficult to explain both simultaneously. Moreover, within the wide range of DM interaction models considered, we do not find a simultaneous explanation of CoGeNT and DAMA/LIBRA compatible with constraints from other experiments. However, in certain cases part of the data can be made consistent. For example, the modulation signal from CoGeNT becomes consistent with the total rate and with limits from other DM searches at 90% CL (but not with the DAMA/LIBRA signal) if DM scattering is inelastic spin-independent with just the right couplings to protons and neutrons to reduce the scattering rate on xenon. Conversely the DAMA/LIBRA signal (but not CoGeNT) can be explained by spin-dependent inelastic DM scattering.Comment: 20 pages, 9 figure

    Gamma-ray and radio tests of the e+e- excess from DM annihilations

    Full text link
    PAMELA and ATIC recently reported an excess in e+e- cosmic rays. We show that if it is due to Dark Matter annihilations, the associated gamma-ray flux and the synchrotron emission produced by e+e- in the galactic magnetic field violate HESS and radio observations of the galactic center and HESS observations of dwarf Spheroidals, unless the DM density profile is significantly less steep than the benchmark NFW and Einasto profiles.Comment: 16 pages, 4 figures; v2: normalizations fixed in Table 2 and typos corrected (no changes in the analysis nor the results), some references and comments added; v3: minor additions, matches published versio

    The C parameter distribution in e+e- annihilation

    Full text link
    We study perturbative and non-perturbative aspects of the distribution of the C parameter in e+e- annihilation using renormalon techniques. We perform an exact calculation of the characteristic function, corresponding to the C parameter differential cross section for a single off-shell gluon. We then concentrate on the two-jet region, derive the Borel representation of the Sudakov exponent in the large-beta_0 limit and compare the result to that of the thrust T. Analysing the exponent, we distinguish two ingredients: the jet function, depending on Q^2C, summarizing the effects of collinear radiation, and a function describing soft emission at large angles, with momenta of order QC. The former is the same as for the thrust upon scaling C by 1/6, whereas the latter is different. We verify that the rescaled C distribution coincides with that of 1-T to next-to-leading logarithmic accuracy, as predicted by Catani and Webber, and demonstrate that this relation breaks down beyond this order owing to soft radiation at large angles. The pattern of power corrections is also similar to that of the thrust: corrections appear as odd powers of Lambda/(QC). Based on the size of the renormalon ambiguity, however, the shape function is different: subleading power corrections for the C distribution appear to be significantly smaller than those for the thrust.Comment: 24 pages, Latex (using JHEP3.cls), 1 postscript figur

    Scaling anomaly in cosmic string background

    Full text link
    We show that the classical scale symmetry of a particle moving in cosmic string background is broken upon inequivalent quantization of the classical system, leading to anomaly. The consequence of this anomaly is the formation of single bound state in the coupling interval \gamma\in(-1,1). The inequivalent quantization is characterized by a 1-parameter family of self-adjoint extension parameter \omega. It has been conjectured that the formation of loosely bound state in cosmic string background may lead to the so called anomalous scattering cross section for the particles, which is usually seen in molecular physics.Comment: 4 pages,1 figur

    Scaling Rule for Nonperturbative Radiation in a Class of Event Shapes

    Full text link
    We discuss nonperturbative radiation for a recently introduced class of infrared safe event shape weights, which describe the narrow-jet limit. Starting from next-to-leading logarithmic (NLL) resummation, we derive an approximate scaling rule that relates the nonperturbative shape functions for these weights to the shape function for the thrust. We argue that the scaling reflects the boost invariance implicit in NLL resummation, and discuss its limitations. In the absence of data analysis for the new event shapes, we compare these predictions to the output of the event generator PYTHIA.Comment: 23 pages, 3 figures, uses JHEP3.cls (included); v2 - version to appear in JHE

    Event Shape/Energy Flow Correlations

    Full text link
    We introduce a set of correlations between energy flow and event shapes that are sensitive to the flow of color at short distances in jet events. These correlations are formulated for a general set of event shapes, which includes jet broadening and thrust as special cases. We illustrate the method for electron-positron annihilation dijet events, and calculate the correlation at leading logarithm in the energy flow and at next-to-leading-logarithm in the event shape.Comment: 43 pages, eight eps figures; minor changes, references adde
    corecore