1,403 research outputs found
Structural and Magnetic Properties of Trigonal Iron
First principles calculations of the electronic structure of trigonal iron
were performed using density function theory. The results are used to predict
lattice spacings, magnetic moments and elastic properties; these are in good
agreement with experiment for both the bcc and fcc structures. We find however,
that in extracting these quantities great care must be taken in interpreting
numerical fits to the calculated total energies. In addition, the results for
bulk iron give insight into the properties of thin iron films. Thin films grown
on substrates with mismatched lattice constants often have non-cubic symmetry.
If they are thicker than a few monolayers their electronic structure is similar
to a bulk material with an appropriately distorted geometry, as in our trigonal
calculations. We recast our bulk results in terms of an iron film grown on the
(111) surface of an fcc substrate, and find the predicted strain energies and
moments accurately reflect the trends for iron growth on a variety of
substrates.Comment: 11 pages, RevTeX,4 tar'd,compressed, uuencoded Postscript figure
Dirac gaugino as leptophilic dark matter
We investigate the leptophilic properties of Dirac gauginos in an
R--symmetric N=2 supersymmetric model with extended gauge and Higgs sectors.
The annihilation of Dirac gauginos to leptons requires no chirality flip in the
final states so that it is not suppressed as in the Majorana case. This implies
that it can be sizable enough to explain the positron excess observed by the
PAMELA experiment with moderate or no boost factors. When squark masses are
heavy, the annihilation of Dirac gauginos to hadrons is controlled by their
Higgsino fraction and is driven by the and final states.
Moreover, at variance with the Majorana case, Dirac gauginos with a
non-vanishing higgsino fraction can also have a vector coupling with the
gauge boson leading to a sizable spin--independent scattering cross section off
nuclei. Saturating the current antiproton limit, we show that Dirac gauginos
can leave a signal in direct detection experiments at the level of the
sensitivity of dark matter searches at present and in the near future.Comment: 24 pages, 10 figures, typos corrected, final version published on
JCA
Breaking of general rotational symmetries by multi-dimensional classical ratchets
We demonstrate that a particle driven by a set of spatially uncorrelated,
independent colored noise forces in a bounded, multidimensional potential
exhibits rotations that are independent of the initial conditions. We calculate
the particle currents in terms of the noise statistics and the potential
asymmetries by deriving an n-dimensional Fokker-Planck equation in the small
correlation time limit. We analyze a variety of flow patterns for various
potential structures, generating various combinations of laminar and rotational
flows.Comment: Accepted, Physical Review
ATIC and PAMELA Results on Cosmic e^\pm Excesses and Neutrino Masses
Recently the ATIC and PAMELA collaborations released their results which show
the abundant e^\pm excess in cosmic rays well above the background, but not for
the \bar{p}. Their data if interpreted as the dark matter particles'
annihilation imply that the new physics with the dark matter is closely related
to the lepton sector. In this paper we study the possible connection of the new
physics responsible for the cosmic e^\pm excesses to the neutrino mass
generation. We consider a class of models and do the detailed numerical
calculations. We find that these models can natually account for the ATIC and
PAMELA e^\pm and \bar{p} data and at the same time generate the small neutrino
masses.Comment: 7 pages, 5 figures. Published version with minor corrections and more
reference
Dark Matter attempts for CoGeNT and DAMA
Recently, the CoGeNT collaboration presented a positive signal for an annual
modulation in their data set. In light of the long standing annual modulation
signal in DAMA/LIBRA, we analyze the compatibility of both of these signal
within the hypothesis of dark matter (DM) scattering on nuclei, taking into
account existing experimental constraints. We consider the cases of elastic and
inelastic scattering with either spin-dependent or spin-independent coupling to
nucleons. We allow for isospin violating interactions as well as for light
mediators. We find that there is some tension between the size of the
modulation signal and the time-integrated event excess in CoGeNT, making it
difficult to explain both simultaneously. Moreover, within the wide range of DM
interaction models considered, we do not find a simultaneous explanation of
CoGeNT and DAMA/LIBRA compatible with constraints from other experiments.
However, in certain cases part of the data can be made consistent. For example,
the modulation signal from CoGeNT becomes consistent with the total rate and
with limits from other DM searches at 90% CL (but not with the DAMA/LIBRA
signal) if DM scattering is inelastic spin-independent with just the right
couplings to protons and neutrons to reduce the scattering rate on xenon.
Conversely the DAMA/LIBRA signal (but not CoGeNT) can be explained by
spin-dependent inelastic DM scattering.Comment: 20 pages, 9 figure
Gamma-ray and radio tests of the e+e- excess from DM annihilations
PAMELA and ATIC recently reported an excess in e+e- cosmic rays. We show that
if it is due to Dark Matter annihilations, the associated gamma-ray flux and
the synchrotron emission produced by e+e- in the galactic magnetic field
violate HESS and radio observations of the galactic center and HESS
observations of dwarf Spheroidals, unless the DM density profile is
significantly less steep than the benchmark NFW and Einasto profiles.Comment: 16 pages, 4 figures; v2: normalizations fixed in Table 2 and typos
corrected (no changes in the analysis nor the results), some references and
comments added; v3: minor additions, matches published versio
The C parameter distribution in e+e- annihilation
We study perturbative and non-perturbative aspects of the distribution of the
C parameter in e+e- annihilation using renormalon techniques. We perform an
exact calculation of the characteristic function, corresponding to the C
parameter differential cross section for a single off-shell gluon. We then
concentrate on the two-jet region, derive the Borel representation of the
Sudakov exponent in the large-beta_0 limit and compare the result to that of
the thrust T. Analysing the exponent, we distinguish two ingredients: the jet
function, depending on Q^2C, summarizing the effects of collinear radiation,
and a function describing soft emission at large angles, with momenta of order
QC. The former is the same as for the thrust upon scaling C by 1/6, whereas the
latter is different. We verify that the rescaled C distribution coincides with
that of 1-T to next-to-leading logarithmic accuracy, as predicted by Catani and
Webber, and demonstrate that this relation breaks down beyond this order owing
to soft radiation at large angles. The pattern of power corrections is also
similar to that of the thrust: corrections appear as odd powers of Lambda/(QC).
Based on the size of the renormalon ambiguity, however, the shape function is
different: subleading power corrections for the C distribution appear to be
significantly smaller than those for the thrust.Comment: 24 pages, Latex (using JHEP3.cls), 1 postscript figur
Scaling anomaly in cosmic string background
We show that the classical scale symmetry of a particle moving in cosmic
string background is broken upon inequivalent quantization of the classical
system, leading to anomaly. The consequence of this anomaly is the formation of
single bound state in the coupling interval \gamma\in(-1,1). The inequivalent
quantization is characterized by a 1-parameter family of self-adjoint extension
parameter \omega. It has been conjectured that the formation of loosely bound
state in cosmic string background may lead to the so called anomalous
scattering cross section for the particles, which is usually seen in molecular
physics.Comment: 4 pages,1 figur
Scaling Rule for Nonperturbative Radiation in a Class of Event Shapes
We discuss nonperturbative radiation for a recently introduced class of
infrared safe event shape weights, which describe the narrow-jet limit.
Starting from next-to-leading logarithmic (NLL) resummation, we derive an
approximate scaling rule that relates the nonperturbative shape functions for
these weights to the shape function for the thrust. We argue that the scaling
reflects the boost invariance implicit in NLL resummation, and discuss its
limitations. In the absence of data analysis for the new event shapes, we
compare these predictions to the output of the event generator PYTHIA.Comment: 23 pages, 3 figures, uses JHEP3.cls (included); v2 - version to
appear in JHE
Event Shape/Energy Flow Correlations
We introduce a set of correlations between energy flow and event shapes that
are sensitive to the flow of color at short distances in jet events. These
correlations are formulated for a general set of event shapes, which includes
jet broadening and thrust as special cases. We illustrate the method for
electron-positron annihilation dijet events, and calculate the correlation at
leading logarithm in the energy flow and at next-to-leading-logarithm in the
event shape.Comment: 43 pages, eight eps figures; minor changes, references adde
- …