28,178 research outputs found

    Theoretical prediction of interference loading on aircraft stores: Part I - Subsonic speeds

    Get PDF
    Computer program is developed for theoretically predicting loading on pylon-mounted stores in subsonic compressible flow. Linear theory predicts flow field produced by aircraft wing, nose, inlet, and pylons. Program was written in FORTRAN IV for CDC 6000 computer

    Theoretical prediction of interference loading on aircraft stores: Part II - Supersonic speeds

    Get PDF
    Linear theory is used, without two dimensional or slender body assumptions, to predict flow field produced by aircraft wing, nose, inlet, and pylons. Aircraft shock wave locations are predicted, and their effect on flow field is included through transformation of aircraft geometry. Program was written in FORTRAN IV for CDC 6400 computer

    Improved method for aerodynamic analysis of wing-body-tail configurations in subsonic and supersonic flow

    Get PDF
    Method permits analysis of noncircular bodies and calculation of wing-body interference effects in presence of body closure, two features not previously available. In addition, use of vortex distribution, having linear variation in streamwise direction, results in improved chordwise pressure distributions on wing and tail surfaces

    Game Theory For Self-Driving Cars

    Get PDF
    Pedestrian behaviour understanding is of utmost importance for autonomous vehicles (AVs). Pedestrian behaviour is complex and harder to model and predict than other road users such as drivers and cyclists. In this paper, we present an overview of our ongoing work on modelling AV-human interactions using game theory for autonomous vehicles control

    Symmetry breaking in MAST plasma turbulence due to toroidal flow shear

    Full text link
    The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up-down symmetry of the magnetic equilibrium. Using experimental Beam-Emission-Spectroscopy (BES) measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the "shearing" of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored

    Attitude Control and Orbit Maneuver System Selection for the Space Shuttle

    Get PDF
    The propulsion system studies made to select the Attitude Control Propulsion System (ACPS) and Orbit Maneuver System (QMS) for the. McDonnell Douglas - Martin Marietta Space Shuttle Vehicle are summarized in the paper. Both high chamber pressure and low chamber pressure gaseous 02/H2 ACPS concepts are considered in conjunction with ACPS, RL-10, and new development engines for the OMS function. Weights, performance, reliability, maintainability, mission flexibility data are combined with overall system/ vehicle costs to complete the evaluation and the final selection of a high chamber pressure (500 psia) ACPS and liquid pump fed RL-10 OMS

    Multi-filter transit observations of WASP-39b and WASP-43b with three San Pedro M\'artir telescopes

    Get PDF
    Three optical telescopes located at the San Pedro M\'artir National Observatory were used for the first time to obtain multi-filter defocused photometry of the transiting extrasolar planets WASP-39b and WASP-43b. We observed WASP-39b with the 2.12m telescope in the U filter for the first time, and additional observations were carried out in the R and I filters using the 0.84m telescope. WASP-43b was observed in VRI with the same instrument, and in the i filter with the robotic 1.50m telescope. We reduced the data using different pipelines and performed aperture photometry with the help of custom routines, in order to obtain the light curves. The fit of the light curves (1.5--2.5mmag rms), and of the period analysis, allowed a revision of the orbital and physical parameters, revealing for WASP-39b a period (4.0552947±9.65×10−74.0552947 \pm 9.65 \times 10^{-7} days) which is 3.084±0.7743.084 \pm 0.774 seconds larger than previously reported. Moreover, we find for WASP-43b a planet/star radius (0.1738±0.00330.1738 \pm 0.0033) which is 0.01637±0.003710.01637 \pm 0.00371 larger in the i filter with respect to previous works, and that should be confirmed with additional observations. Finally, we confirm no evidence of constant period variations in WASP-43b.Comment: 13 pages, 7 figures, accepted in PASP, scheduled for the February 1, 2015 issu
    • …
    corecore