7 research outputs found

    The effects of accelerated soil acidification on aggrading temperate deciduous forests: The Fernow Experimental Forest Long Term Soil Productivity (LTSP) Study at 13 years

    Get PDF
    Many temperate forests in the Eastern US are young and have experienced decades of elevated inputs of acidic compounds from the atmosphere. As a result, I used the Fernow Experimental Forest Long Term Soil Productivity (LTSP) experiment near Parsons, WV to determine how ongoing acidic deposition may affect total ecosystem carbon (C) storage, stand level dynamics, and soil and foliar chemistry in a young regrowing temperate deciduous forest. I also assessed the potential for acidic deposition effects to cascade up into higher trophic levels through its effects on a soil invertebrate. The LTSP experiment is a randomized block design in which ammonium sulfate is experimentally added to the soil in order to accelerate the acidification of forest soils in a way that is similar to the effects of long-term nitrogen (N) deposition from the atmosphere.;I found that 13 years of ammonium sulfate additions to a regenerating deciduous forest stimulated its ability to store C. This response was driven primarily by increased C storage in aboveground biomass and to a lesser extent by increased C stored in the forest floor. Despite the dominance of a single tree species, the overall response was a complex mixture of species-specific changes in the growth of individuals that may have been tempered by changes in stand density. I also found that after 10 years of growth with continual N and S additions, soil and foliar chemistry in an aggrading temperate deciduous forest show signs of soil acidification and calcium (Ca) and magnesium (Mg) depletion -- suggesting that the ability of these regenerating forests to store C may diminish if acidification were to continue. Additionally, I found that liming may mitigate some of the negative impacts of acidification for experimental or management purposes. Finally, I also found that Pseudopolydesmus serratus millipedes, leaf litter processing invertebrates that contain high levels of Ca, are negatively affected by 13 years of simulated acidic deposition in temperate deciduous forests. The negative effect of N addition on millipede populations, however, could not be tied to a depletion of Ca from the soil and plants but, if widespread, could affect the Ca supply to organisms, like some bird species, that have high Ca requirements during critical stages in their life.;Overall, this research suggests that young regrowing temperate deciduous forests may currently be sequestering more C due to inputs of N from acidic deposition. However, the positive response may involve species specific and stand-level changes and may be short-lived due to soil acidification effects, which should proceed, or co-occur with, reductions in growth rates. The effects of N deposition may also potentially reach higher trophic levels such as consumers of P. serratus, whose populations were negatively affected by N inputs

    A Tabletop X-Ray Tomography Instrument for Nanometer-Scale Imaging: Integration of a Scanning Electron Microscope with a Transition-Edge Sensor Spectrometer

    Full text link
    X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but is difficult to implement due to competing requirements on X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography is predominantly performed at large synchrotron facilities. Compact X-ray nanotomography tools operated in standard analysis laboratories exist, but are limited by X-ray optics and destructive sample preparation techniques. We present a laboratory-scale nanotomography instrument that achieves nanoscale spatial resolution while changing the limitations of conventional tomography tools. The instrument combines the electron beam of a scanning electron microscope (SEM) with the precise, broadband X-ray detection of a superconducting transition-edge sensor (TES) microcalorimeter. The electron beam generates a highly focused X-ray spot in a metal target, while the TES spectrometer isolates target photons with high signal-to-noise. This combination of a focused X-ray spot, energy-resolved X-ray detection, and unique system geometry enable nanoscale, element-specific X-ray imaging in a compact footprint. The proof-of-concept for this approach to X-ray nanotomography is demonstrated by imaging 160 nm features in three dimensions in a Cu-SiO2 integrated circuit, and a path towards finer resolution and enhanced imaging capabilities is discussed.Comment: The following article has been submitted to Physical Review Applie

    Twenty-five-year response of the herbaceous layer of a temperate hardwood forest to elevated nitrogen deposition

    Get PDF
    Increasing rates of atmospheric deposition of nitrogen (N) present a novel threat to the biodiversity of terrestrial ecosystems. Many forests are particularly susceptible to excess N given their proximity to sources of anthropogenic N emissions. This study summarizes results of a 25-yr treatment of an entire central Appalachian hardwood forest watershed via aerial applications of N with a focus on effects of added N on the cover, species richness, and composition of the herbaceous layer. Research was carried out on two watersheds of the Fernow Experimental Forest (FEF), West Virginia. The long-term reference watershed at FEF (WS4) was used as a reference; WS3 was experimentally treated, receiving three aerial applications of N per year as (NH₄)₂SO₄ totaling 35 kg N ha⁻¹ yr⁻¹, beginning in 1989. Cover of the herbaceous layer (vascular plants ≤1 m in height) was estimated visually in five circular 1-m² subplots within each of seven circular 400-m² sample plots spanning all aspects and elevations of each watershed. Sampling was carried out in early July of each of the following years: 1991, 1992, 1994, 2003, and 2009—2014, yielding 10 yr of data collected over a 23-yr period. It was anticipated that the N treatment on WS3 would decrease species richness and alter herb layer composition by enhancing cover of a few nitrophilic species at the expense of numerous N-efficient species. Following a period of minimal response from 1991 to 1994, cover of the herb layer increased substantially on N-treated WS3, and remained high thereafter. There was also a coincidental decrease in herb layer diversity during this period, along with a sharp divergence in community composition between WS4 and WS3. Most changes appear to have arisen from unprecedented, N-mediated increases of Rubus spp., which are normally associated with the high-light environment of openings, rather than beneath intact forest canopies. These findings support the prediction that N-mediated changes in the herbaceous layer of impacted forests are driven primarily by increases in nitrophilic species.Journal ArticleFinal article publishe

    Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time

    No full text
    International audienceObservations of the Mars upper atmosphere made from the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft have been used to determine the loss rates of gas from the upper atmosphere to space for a complete Mars year (16 Nov 2014 – 3 Oct 2016). Loss rates for H and O are sufficient to remove ∼2-3 kg/s to space. By itself, this loss would be significant over the history of the planet. In addition, loss rates would have been greater early in history due to the enhanced solar EUV and more-active Sun. Integrated loss, based on current processes whose escape rates in the past are adjusted according to expected solar evolution, would have been as much as 0.8 bar CO2 or 23 m global equivalent layer of H2O; these losses are likely to be lower limits due to the nature of the extrapolation of loss rates to the earliest times. Combined with the lack of surface or subsurface reservoirs for CO2 that could hold remnants of an early, thick atmosphere, these results suggest that loss of gas to space has been the dominant process responsible for changing the climate of Mars from an early, warmer environment to the cold, dry one that we see today

    Evaluation of prognostic risk models for postoperative pulmonary complications in adult patients undergoing major abdominal surgery: a systematic review and international external validation cohort study

    Get PDF
    Background Stratifying risk of postoperative pulmonary complications after major abdominal surgery allows clinicians to modify risk through targeted interventions and enhanced monitoring. In this study, we aimed to identify and validate prognostic models against a new consensus definition of postoperative pulmonary complications. Methods We did a systematic review and international external validation cohort study. The systematic review was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE and Embase on March 1, 2020, for articles published in English that reported on risk prediction models for postoperative pulmonary complications following abdominal surgery. External validation of existing models was done within a prospective international cohort study of adult patients (≥18 years) undergoing major abdominal surgery. Data were collected between Jan 1, 2019, and April 30, 2019, in the UK, Ireland, and Australia. Discriminative ability and prognostic accuracy summary statistics were compared between models for the 30-day postoperative pulmonary complication rate as defined by the Standardised Endpoints in Perioperative Medicine Core Outcome Measures in Perioperative and Anaesthetic Care (StEP-COMPAC). Model performance was compared using the area under the receiver operating characteristic curve (AUROCC). Findings In total, we identified 2903 records from our literature search; of which, 2514 (86·6%) unique records were screened, 121 (4·8%) of 2514 full texts were assessed for eligibility, and 29 unique prognostic models were identified. Nine (31·0%) of 29 models had score development reported only, 19 (65·5%) had undergone internal validation, and only four (13·8%) had been externally validated. Data to validate six eligible models were collected in the international external validation cohort study. Data from 11 591 patients were available, with an overall postoperative pulmonary complication rate of 7·8% (n=903). None of the six models showed good discrimination (defined as AUROCC ≥0·70) for identifying postoperative pulmonary complications, with the Assess Respiratory Risk in Surgical Patients in Catalonia score showing the best discrimination (AUROCC 0·700 [95% CI 0·683–0·717]). Interpretation In the pre-COVID-19 pandemic data, variability in the risk of pulmonary complications (StEP-COMPAC definition) following major abdominal surgery was poorly described by existing prognostication tools. To improve surgical safety during the COVID-19 pandemic recovery and beyond, novel risk stratification tools are required. Funding British Journal of Surgery Society

    Metabolism of Chemical Carcinogens

    No full text
    corecore