123 research outputs found
A panel of kallikrein markers can predict outcome of prostate biopsy following clinical work-up: an independent validation study from the European Randomized Study of Prostate Cancer screening, France
<p>Abstract</p> <p>Background</p> <p>We have previously shown that a panel of kallikrein markers - total prostate-specific antigen (PSA), free PSA, intact PSA and human kallikrein-related peptidase 2 (hK2) - can predict the outcome of prostate biopsy in men with elevated PSA. Here we investigate the properties of our panel in men subject to clinical work-up before biopsy.</p> <p>Methods</p> <p>We applied a previously published predictive model based on the kallikrein panel to 262 men undergoing prostate biopsy following an elevated PSA (≥ 3 ng/ml) and further clinical work-up during the European Randomized Study of Prostate Cancer screening, France. The predictive accuracy of the model was compared to a "base" model of PSA, age and digital rectal exam (DRE).</p> <p>Results</p> <p>83 (32%) men had prostate cancer on biopsy of whom 45 (54%) had high grade disease (Gleason score 7 or higher). Our model had significantly higher accuracy than the base model in predicting cancer (area-under-the-curve [AUC] improved from 0.63 to 0.78) or high-grade cancer (AUC increased from 0.77 to 0.87). Using a decision rule to biopsy those with a 20% or higher risk of cancer from the model would reduce the number of biopsies by nearly half. For every 1000 men with elevated PSA and clinical indication for biopsy, the model would recommend against biopsy in 61 men with cancer, the majority (≈80%) of whom would have low stage <it>and </it>low grade disease at diagnosis.</p> <p>Conclusions</p> <p>In this independent validation study, the model was highly predictive of prostate cancer in men for whom the decision to biopsy is based on both elevated PSA and clinical work-up. Use of this model would reduce a large number of biopsies while missing few cancers.</p
Computational Analysis of HIV-1 Resistance Based on Gene Expression Profiles and the Virus-Host Interaction Network
A very small proportion of people remain negative for HIV infection after repeated HIV-1 viral exposure, which is called HIV-1 resistance. Understanding the mechanism of HIV-1 resistance is important for the development of HIV-1 vaccines and Acquired Immune Deficiency Syndrome (AIDS) therapies. In this study, we analyzed the gene expression profiles of CD4+ T cells from HIV-1-resistant individuals and HIV-susceptible individuals. One hundred eighty-five discriminative HIV-1 resistance genes were identified using the Minimum Redundancy-Maximum Relevance (mRMR) and Incremental Feature Selection (IFS) methods. The virus protein target enrichment analysis of the 185 HIV-1 resistance genes suggested that the HIV-1 protein nef might play an important role in HIV-1 infection. Moreover, we identified 29 infection information exchanger genes from the 185 HIV-1 resistance genes based on a virus-host interaction network analysis. The infection information exchanger genes are located on the shortest paths between virus-targeted proteins and are important for the coordination of virus infection. These proteins may be useful targets for AIDS prevention or therapy, as intervention in these pathways could disrupt communication with virus-targeted proteins and HIV-1 infection
Recommended from our members
Genetic risk factors for body mass index and obesity in an ethnically diverse population: results from the Population Architecture using Genomics and Epidemiology (PAGE) Study
Several genome-wide association studies (GWAS) have demonstrated that common genetic variants contribute to obesity. However, studies of this complex trait have focused on ancestrally European populations, despite the high prevalence of obesity in some minority groups. As part of the ‘Population Architecture using Genomics and Epidemiology (PAGE)’ Consortium, we investigated the association between thirteen GWAS-identified SNPs and BMI and obesity in 69,775 subjects, including 6,149 American Indians, 15,415 African-Americans, 2,438 East Asians, 7,346 Hispanics, 604 Pacific Islanders, and 37,823 European Americans. For the BMI-increasing allele of each SNP, we calculated beta coefficients using linear regression (for BMI) and risk estimates using logistic regression (for obesity defined as BMI ≥ 30) followed by fixed-effects meta-analysis to combine results across PAGE sites. Analyses stratified by racial/ethnic group assumed an additive genetic model and adjusted for age, sex, and current smoking. We defined “replicating SNPs” (in European Americans) and “generalizing SNPs” (in other racial/ethnic groups) as those associated with an allele frequency-specific increase in BMI. By this definition, we replicated 9/13 SNP associations (5 out of 8 loci) in European Americans. We also generalized 8/13 SNP associations (5/8 loci) in East Asians, 7/13 (5/8 loci) in African Americans, 6/13 (4/8 loci) in Hispanics, 5/8 in Pacific Islanders (5/8 loci), and 5/9 (4/8 loci) in American Indians. Linkage disequilibrium patterns suggest that tagSNPs selected for European Americans may not adequately tag causal variants in other ancestry groups. Accordingly, fine-mapping in large samples is needed to comprehensively explore these loci in diverse populations
HbA1C and Cancer Risk in Patients with Type 2 Diabetes – A Nationwide Population-Based Prospective Cohort Study in Sweden
Background: Diabetes is associated with increased cancer risk. The underlying mechanisms remain unclear. Hyperglycemia might be one risk factor. HbA1c is an indicator of the blood glucose level over the latest 1 to 3 months. This study aimed to investigate association between HbA1c level and cancer risks in patients with type 2 diabetes based on real life situations. Methods: This is a cohort study on 25,476 patients with type 2 diabetes registered in the Swedish National Diabetes Register from 1997-1999 and followed until 2009. Follow-up for cancer was accomplished through register linkage. We calculated incidences of and hazard ratios (HR) for cancer in groups categorized by HbA1c <= 58 mmol/mol (7.5%) versus >58 mmol/mol, by quartiles of HbA1c, and by HbA1c continuously at Cox regression, with covariance adjustment for age, sex, diabetes duration, smoking and insulin treatment, or adjusting with a propensity score. Results: Comparing HbA1c >58 mmol/mol with <= 58 mmol/mol, adjusted HR for all cancer was 1.02 [95% CI 0.95-1.10] using baseline HbA1c, and 1.04 [95% CI 0.97-1.12] using updated mean HbA1c, and HRs were all non-significant for specific cancers of gastrointestinal, kidney and urinary organs, respiratory organs, female genital organs, breast or prostate. Similarly, no increased risks of all cancer or the specific types of cancer were found with higher quartiles of baseline or updated mean HbA1c, compared to the lowest quartile. HR for all cancer was 1.01 [0.98-1.04] per 1%-unit increase in HbA1c used as a continuous variable, with non-significant HRs also for the specific types of cancer per unit increase in HbA1c. Conclusions: In this study there were no associations between HbA1c and risks for all cancers or specific types of cancer in patients with type 2 diabetes
Benzyl Isothiocyanate Causes FoxO1-Mediated Autophagic Death in Human Breast Cancer Cells
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, inhibits growth of breast cancer cells but the mechanisms underlying growth inhibitory effect of BITC are not fully understood. Here, we demonstrate that BITC treatment causes FoxO1-mediated autophagic death in cultured human breast cancer cells. The BITC-treated breast cancer cells (MDA-MB-231, MCF-7, MDA-MB-468, BT-474, and BRI-JM04) and MDA-MB-231 xenografts from BITC-treated mice exhibited several features characteristic of autophagy, including appearance of double-membrane vacuoles (transmission electron microscopy) and acidic vesicular organelles (acridine orange staining), cleavage of microtubule-associated protein 1 light chain 3 (LC3), and/or suppression of p62 (p62/SQSTM1 or sequestosome 1) expression. On the other hand, a normal human mammary epithelial cell line (MCF-10A) was resistant to BITC-induced autophagy. BITC-mediated inhibition of MDA-MB-231 and MCF-7 cell viability was partially but statistically significantly attenuated in the presence of autophagy inhibitors 3-methyl adenine and bafilomycin A1. Stable overexpression of Mn-superoxide dismutase, which was fully protective against apoptosis, conferred only partial protection against BITC-induced autophagy. BITC treatment decreased phosphorylation of mTOR and its downstream targets (P70s6k and 4E-BP1) in cultured MDA-MB-231 and MCF-7 cells and MDA-MB-231 xenografts, but activation of mTOR by transient overexpression of its positive regulator Rheb failed to confer protection against BITC-induced autophagy. Autophagy induction by BITC was associated with increased expression and acetylation of FoxO1. Furthermore, autophagy induction and cell growth inhibition resulting from BITC exposure were significantly attenuated by small interfering RNA knockdown of FoxO1. In conclusion, the present study provides novel insights into the molecular circuitry of BITC-induced cell death involving FoxO1-mediated autophagy
Cruciferous vegetable supplementation in a controlled diet study alters the serum peptidome in a GSTM1-genotype dependent manner
<p>Abstract</p> <p>Background</p> <p>Cruciferous vegetable intake is inversely associated with the risk of several cancers. Isothiocyanates (ITC) are hypothesized to be the major bioactive constituents contributing to these cancer-preventive effects. The polymorphic glutathione-<it>S</it>-transferase (GST) gene family encodes several enzymes which catalyze ITC degradation <it>in vivo</it>.</p> <p>Methods</p> <p>We utilized high throughput proteomics methods to examine how human serum peptides (the "peptidome") change in response to cruciferous vegetable feeding in individuals of different <it>GSTM1 </it>genotypes. In two randomized, crossover, controlled feeding studies (EAT and 2EAT) participants consumed a fruit- and vegetable-free basal diet and the basal diet supplemented with cruciferous vegetables. Serum samples collected at the end of the feeding period were fractionated and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry spectra were obtained. Peak identification/alignment computer algorithms and mixed effects models were used to analyze the data.</p> <p>Results</p> <p>After analysis of spectra from EAT participants, 24 distinct peaks showed statistically significant differences associated with cruciferous vegetable intake. Twenty of these peaks were driven by their <it>GSTM1 </it>genotype (i.e., <it>GSTM1+ </it>or <it>GSTM1- </it>null). When data from EAT and 2EAT participants were compared by joint processing of spectra to align a common set, 6 peaks showed consistent changes in both studies in a genotype-dependent manner. The peaks at 6700 <it>m/z </it>and 9565 <it>m/z </it>were identified as an isoform of transthyretin (TTR) and a fragment of zinc α2-glycoprotein (ZAG), respectively.</p> <p>Conclusions</p> <p>Cruciferous vegetable intake in <it>GSTM1+ </it>individuals led to changes in circulating levels of several peptides/proteins, including TTR and a fragment of ZAG. TTR is a known marker of nutritional status and ZAG is an adipokine that plays a role in lipid mobilization. The results of this study present evidence that the <it>GSTM1</it>-genotype modulates the physiological response to cruciferous vegetable intake.</p
Probing the Interstellar Medium in Early type galaxies with ISO observations
Four IRAS-detected early type galaxies were observed with ISO. With the
exception of the 15 micron image of NGC1052, the mid-IR emission from NGC1052,
NGC1155, NGC5866 and NGC6958 at 4.5, 7 and 15 microns show extended emission.
Mid-IR emission from NGC1052, NGC1155, and NGC6958 follows a de Vaucouleurs
profile. The ratio of 15/7 micron flux decreases with radius in these galaxies,
approaching the values empirically observed for purely stellar systems. In
NGC5866, the 7 and 15 micron emission is concentrated in the edge-on dust lane.
All the galaxies are detected in the [CII] line, and the S0s NGC1155 and
NGC5866 are detected in the [OI] line as well. The ISO-LWS observations of the
[CII] line are more sensitive measures of cool, neutral ISM than HI and CO by
about a factor of 10-100. Three of four early type galaxies, namely NGC1052,
NGC6958 and NGC5866, have low ratio FIR/Blue and show a lower [CII]/FIR, which
is due to a softer radiation field from old stellar populations. The low
[CII]/CO ratio in NGC5866 ([CII]/CO(1-0) < 570) confirms this scenario. We
estimate the UV radiation expected from the old stellar populations in these
galaxies and compare it to that needed to heat the gas to account for the
cooling observed [CII] and [OI] lines. In three out of four galaxies, NGC1052,
NGC5866 and NGC6958, the predicted UV radiation falls short by a factor of 2-3.
In view of the observed intrinsic scatter in the "UV-upturn" in elliptical
galaxies and its great sensitivity to age and metallicity effects, this is not
significant. However, the much larger difference (about a factor of 20) between
the UV radiation from old stars and that needed to produce the FIR lines for
NGC 1155 is strong evidence for the presence of young stars, in NGC1155.Comment: To appear in the Astrophysical Journal. Figure 1 appears as a
separate jpg figur
Association of cord blood methylation fractions at imprinted insulin-like growth factor 2 (IGF2), plasma IGF2, and birth weight
status: publishe
- …