80 research outputs found

    Direct fiber comb stabilization to a gas-filled hollow-core photonic crystal fiber

    Get PDF
    We have isolated a single tooth from a fiber laser-based optical frequency comb for nonlinear spectroscopy and thereby directly referenced the comb. An 89 MHz erbium fiber laser frequency comb is directly stabilized to the P(23) (1539.43 nm) overtone transition of [superscript]12C[subscript]2H[subscript]2 inside a hollow-core photonic crystal fiber. To do this, a single comb tooth is isolated and amplified from 20 nW to 40 mW with sufficient fidelity to perform saturated absorption spectroscopy. The fractional stability of the comb, ~7 nm away from the stabilized tooth, is shown to be 6 × 10[superscript]−12 at 100 ms gate time, which is over an order of magnitude better than that of a comb referenced to a GPS-disciplined Rb oscillator

    Hypocycloid-shaped hollow-core photonic crystal fiber Part II: Cladding effect on confinement and bend loss

    Get PDF
    We report on numerical and experimental studies on the influence of cladding ring-number on the confinement and bend loss in hypocycloid-shaped Kagome hollow core photonic crystal fiber. The results show that beyond the second ring, the ring number has a minor effect on confinement loss whereas the bend loss is strongly reduced with the ringnumber increase. Finally, the results show that the increase in the cladding ring-number improves the modal content of the fiber

    Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss

    Get PDF
    We report on numerical and experimental studies showing the influence of arc curvature on the confinement loss in hypocycloid-core Kagome hollow-core photonic crystal fiber. The results prove that with such a design the optical performances are strongly driven by the contour negative curvature of the core-cladding interface. They show that the increase in arc curvature results in a strong decrease in both the confinement loss and the optical power overlap between the core mode and the silica core-surround, including a modal content approaching true single-mode guidance. Fibers with enhanced negative curvature were then fabricated with a record loss-level of 17 dB/km at 1064 nm

    A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre

    Get PDF
    Over the past decade intense laser fields with a single-cycle duration and even shorter, subcycle multicolour field transients have been generated and applied to drive attosecond phenomena in strong-field physics. Because of their extensive bandwidth, single-cycle fields cannot be emitted or amplified by laser sources directly and, as a rule, are produced by external pulse compression—a combination of nonlinear optical spectral broadening followed up by dispersion compensation. Here we demonstrate a simple robust driver for high-field applications based on this Kagome fibre approach that ensures pulse self-compression down to the ultimate single-cycle limit and provides phase-controlled pulses with up to a 100 μJ energy level, depending on the filling gas, pressure and the waveguide length

    Tunable ultra-fast infrared generation in a gas-filled hollow core capillary by a four-wave mixing process: erratum

    Get PDF
    This erratum reports corrections to the temporal axes in Figs. 12 and 13 of J. Opt. Soc. Am. B 39, 662 (2022)JOBPDE0740-322410.1364/JOSAB.444574

    Ultra-flat wideband single-pump Raman-enhanced parametric amplification

    Get PDF
    We experimentally optimize a single pump fiber optical parametric amplifier in terms of gain spectral bandwidth and gain variation (GV). We find that optimal performance is achieved with the pump tuned to the zero-dispersion wavelength of dispersion stable highly nonlinear fiber (HNLF). We demonstrate further improvement of parametric gain bandwidth and GV by decreasing the HNLF length. We discover that Raman and parametric gain spectra produced by the same pump may be merged together to enhance overall gain bandwidth, while keeping GV low. Consequently, we report an ultra-flat gain of 9.6±0.5 dB over a range of 111 nm (12.8 THz) on one side of the pump. Additionally, we demonstrate amplification of a 60 Gbit/s QPSK signal tuned over a portion of the available bandwidth with OSNR penalty less than 1 dB for Q2 below 14 dB

    Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited]

    Get PDF
    International audienceThe development of hollow core photonic crystal fibers with low losses over a broad spectral region in the near IR enabled the demonstration of a novel laser type - Hollow-core Optical Fiber Gas Laser (HOFGLAS). The laser combines attractive features of fiber lasers such as compactness and long interaction length of pump and laser radiation with those of gas lasers such as the potential for high output power and narrow line width. This paper summarizes recent developments and describes the demonstration of C2H2 and HCN prototype lasers. Avenues to extend laser emission further into the IR are discussed

    Reduction of the laser pulse duration with extra and intra cavity techniques : Energetic femtosecond pulses post-compression and spectral modulation of losses in the Ti˸sapphire preamplifier

    No full text
    La course vers les impulsions ultra-courtes et énergétiques est en plein essor avec le développement de nombreuses applications. Dans ce manuscrit, plusieurs méthodes de réduction de la durée d'impulsion énergétique sont étudiées. La mise en oeuvre d’un système de post-compression basé sur le principe de SPM-NER dans une lame de silice a tout d'abord permis de produire, à partir d'impulsions de 50 fs, des impulsions de 16 fs-5mJ. Dans une seconde partie, nous proposons une nouvelle méthode de post-compression efficace basée sur l'ionisation d'un gaz rare dans un capillaire creux. Cette technique a permis d'obtenir à la fois des impulsions ultra-courtes et des énergies importantes (11 fs-13 mJ). Les résultats d'une modélisation réalisée au CEA/SPAM, en bon accord avec les résultats expérimentaux, ont permis d'approfondir la compréhension des divers mécanismes mis en jeu. Afin de produire des impulsions encore plus courtes, il est nécessaire de travailler directement dans les chaînes laser, en amont du système de post-compression. Le rétrécissement spectral par le gain dans leTi:saphir des chaînes laser, limite en général les durées des impulsions à 30 fs. Ce phénomène, étudié lors de cette thèse, a été compensé grâce à une modulation de perte spectrale (filtre) dans le pré-amplificateur (cavité régénérative), localisée au maximum de la courbe de gain. Des impulsions de l’ordre de 20 fs ont été obtenues. Ces études ont été complétées par une modélisation de l'amplification des impulsions qui s'est avérée en très bon accord avec les mesures expérimentales. La possibilité de combiner ces procédés permettra, àcourt terme, la production d'impulsions laser sub-10 fs énergétiques (~10 mJ) pour générer des impulsions XUV attosecondes isolées.High energy ultrashort pulses are highly desirable for many applications. In thismanuscript, we described several methods for pulse duration reduction at high energy. A postcompressionsystem, using SPM-NER in a fused silica plate, has firstly provided 16 fs-5mJpulses, from 50 fs pulses. In a second part, we present a new efficient post compressiontechnique, achieved through ionization of gas in a capillary. With this technique, ultrashortand high energy pulses have been reached (11 fs-13 mJ). Results from modeling done atCEA/SPAM, in good agreement with the experimental ones, have been used to understanddeeply all the involved mechanisms. In order to get even shorter pulses, it is incontrovertibleto work on the laser chain, in front of the post-compression systems. In general, due tospectral gain narrowing in Ti:Saphir laser chain, the pulse duration is limited to 30 fs. Thiseffect, investigated in this thesis, has been compensated by modulating the spectral losses(filter) in the pre-amplifier (regenerative cavity), localized at the gain curve maximum. Pulseduration in the order of 20 fs has been obtained. This study has been completed with a pulseamplification model that shows very good agreement with the experimental measurements.The possibility to combine these processes should generate, in the short term, high energy (10mJ) sub-10 fs laser pulses to produce isolated XUV attosecond pulses
    • …
    corecore