856 research outputs found

    Distances to six Cepheids in the LMC cluster NGC1866 from the near-IR surface-brightness method

    Full text link
    We derive individual distances to six Cepheids in the young populous star cluster NGC1866 in the Large Magellanic Cloud employing the near-IR surface brightness technique. With six stars available at the exact same distance we can directly measure the intrinsic uncertainty of the method. We find a standard deviation of 0.11 mag, two to three times larger than the error estimates and more in line with the estimates from Bayesian statistical analysis by Barnes et al. (2005). Using all six distance estimates we determine an unweighted mean cluster distance of 18.30+-0.05. The observations indicate that NGC1866 is close to be at the same distance as the main body of the LMC. If we use the stronger dependence of the p-factor on the period as suggested by Gieren et al. (2005) we find a distance of 18.50+-0.05 (internal error) and the PL relations for Galactic and MC Cepheids are in very good agreement.Comment: Presented at the conference "Stellar Pulsation and Evolution" in Monte Porzio Catone, June 2005. To appear in Mem. Soc. Ast. It. 76/

    Direct Distances to Cepheids in the Large Magellanic Cloud: Evidence for a Universal Slope of the Period-Luminosity Relation up to Solar Abundance

    Full text link
    We have applied the infrared surface brightness (ISB) technique to derive distances to 13 Cepheids in the LMC which span a period range from 3 to 42 days. From the absolute magnitudes of the variables calculated from these distances, we find that the LMC Cepheids define tight period-luminosity relations in the V, I, W, J and K bands which agree exceedingly well with the corresponding Galactic PL relations derived from the same technique, and are significantly steeper than the LMC PL relations in these bands observed by the OGLE-II Project in V, I and W, and by Persson et al. in J and K. We find that the tilt-corrected true distance moduli of the LMC Cepheids show a significant dependence on period, which hints at a systematic error in the ISB technique related to the period of the stars. We identify as the most likely culprit the p-factor which converts the radial into pulsational velocities; our data imply a much steeper period dependence of the p-factor than previously thought, and we derive p=1.58 (+/-0.02) -0.15 (+/-0.05) logP as the best fit from our data, with a zero point tied to the Milky Way open cluster Cepheids. Using this revised p-factor law, the period dependence of the LMC Cepheid distance moduli disappears, and at the same time the Milky Way and LMC PL relations agree among themselves, and with the directly observed LMC PL relations, within the 1 sigma uncertainties. Our main conclusion is that the previous, steeper Galactic PL relations were caused by an erroneous calibration of the p-factor law, and that there is now evidence that the slope of the Cepheid PL relation is independent of metallicity up to solar metallicity, in both optical, and near-infrared bands.Comment: ApJ accepte

    Are the HI deficient galaxies on the outskirts of Virgo recent arrivals?

    Full text link
    The presence on the Virgo cluster outskirts of spiral galaxies with gas deficiencies as strong as those of the inner galaxies stripped by the intracluster medium has led us to explore the possibility that some of these peripheral objects are not newcomers. A dynamical model for the collapse and rebound of spherical shells under the point mass and radial flow approximations has been developed to account for the amplitude of the motions in the Virgo I cluster (VIC) region. According to our analysis, it is not unfeasible that galaxies far from the cluster, including those in a gas-deficient group well to its background, went through its core a few Gyr ago. The implications would be: (1) that the majority of the HI-deficient spirals in the VIC region might have been deprived of their neutral hydrogen by interactions with the hot intracluster medium; and (2) that objects spending a long time outside the cluster cores might keep the gas deficient status without altering their morphology.Comment: Accepted for publication in ApJ. 4 pages, 3 figures. Uses emulateapj

    Measurement of Source Star Colors with the K2C9-CFHT Multi-color Microlensing Survey

    Get PDF
    K2 Campaign 9 (K2C9) was the first space-based microlensing parallax survey capable of measuring microlensing parallaxes of free-floating planet candidate microlensing events. Simultaneous to K2C9 observations we conducted the K2C9 Canada-France-Hawaii Telescope Multi-Color Microlensing Survey (K2C9-CFHT MCMS) in order to measure the colors of microlensing source stars to improve the accuracy of K2C9's parallax measurements. We describe the difference imaging photometry analysis of the K2C9-CFHT MCMS observations, and present the project's first data release. This includes instrumental difference flux lightcurves of 217 microlensing events identified by other microlensing surveys, reference image photometry calibrated to PanSTARRS data release 1 photometry, and tools to convert between instrumental and calibrated flux scales. We derive accurate analytic transformations between the PanSTARRS bandpasses and the Kepler bandpass, as well as angular diameter-color relations in the PanSTARRS bandpasses. To demonstrate the use of our data set, we analyze ground-based and K2 data of a short timescale microlensing event, OGLE-2016-BLG-0795. We find the event has a timescale tE=4.5±0.1t_{\rm E}=4.5 \pm 0.1~days and microlens parallax πE=0.12±0.03\pi_{\rm E}=0.12 \pm 0.03 or 0.97±0.040.97 \pm 0.04, subject to the standard satellite parallax degeneracy. We argue that the smaller value of the parallax is more likely, which implies that the lens is likely a stellar-mass object in the Galactic bulge as opposed to a super-Jupiter mass object in the Galactic disk.Comment: Submitted to PAS

    Additive-multiplicative stochastic models of financial mean-reverting processes

    Full text link
    We investigate a generalized stochastic model with the property known as mean reversion, that is, the tendency to relax towards a historical reference level. Besides this property, the dynamics is driven by multiplicative and additive Wiener processes. While the former is modulated by the internal behavior of the system, the latter is purely exogenous. We focus on the stochastic dynamics of volatilities, but our model may also be suitable for other financial random variables exhibiting the mean reversion property. The generalized model contains, as particular cases, many early approaches in the literature of volatilities or, more generally, of mean-reverting financial processes. We analyze the long-time probability density function associated to the model defined through a It\^o-Langevin equation. We obtain a rich spectrum of shapes for the probability function according to the model parameters. We show that additive-multiplicative processes provide realistic models to describe empirical distributions, for the whole range of data.Comment: 8 pages, 3 figure

    Pricing Options in Incomplete Equity Markets via the Instantaneous Sharpe Ratio

    Full text link
    We use a continuous version of the standard deviation premium principle for pricing in incomplete equity markets by assuming that the investor issuing an unhedgeable derivative security requires compensation for this risk in the form of a pre-specified instantaneous Sharpe ratio. First, we apply our method to price options on non-traded assets for which there is a traded asset that is correlated to the non-traded asset. Our main contribution to this particular problem is to show that our seller/buyer prices are the upper/lower good deal bounds of Cochrane and Sa\'{a}-Requejo (2000) and of Bj\"{o}rk and Slinko (2006) and to determine the analytical properties of these prices. Second, we apply our method to price options in the presence of stochastic volatility. Our main contribution to this problem is to show that the instantaneous Sharpe ratio, an integral ingredient in our methodology, is the negative of the market price of volatility risk, as defined in Fouque, Papanicolaou, and Sircar (2000).Comment: Keywords: Pricing derivative securities, incomplete markets, Sharpe ratio, correlated assets, stochastic volatility, non-linear partial differential equations, good deal bound

    Extreme times for volatility processes

    Get PDF
    We present a detailed study on the mean first-passage time of volatility processes. We analyze the theoretical expressions based on the most common stochastic volatility models along with empirical results extracted from daily data of major financial indices. We find in all these data sets a very similar behavior that is far from being that of a simple Wiener process. It seems necessary to include a framework like the one provided by stochastic volatility models with a reverting force driving volatility toward its normal level to take into account memory and clustering effects in volatility dynamics. We also detect in data a very different behavior in the mean first-passage time depending whether the level is higher or lower than the normal level of volatility. For this reason, we discuss asymptotic approximations and confront them to empirical results with a good agreement, specially with the ExpOU model.Comment: 10, 6 colored figure

    Self-Averaging Scaling Limits of Two-Frequency Wigner Distribution for Random Paraxial Waves

    Get PDF
    Two-frequency Wigner distribution is introduced to capture the asymptotic behavior of the space-frequency correlation of paraxial waves in the radiative transfer limits. The scaling limits give rises to deterministic transport-like equations. Depending on the ratio of the wavelength to the correlation length the limiting equation is either a Boltzmann-like integral equation or a Fokker-Planck-like differential equation in the phase space. The solutions to these equations have a probabilistic representation which can be simulated by Monte Carlo method. When the medium fluctuates more rapidly in the longitudinal direction, the corresponding Fokker-Planck-like equation can be solved exactly.Comment: typos correcte
    • 

    corecore