60 research outputs found

    The Araucaria Project. An improved distance to the Sculptor spiral galaxy NGC 300 from its Cepheid variables

    Full text link
    In a previous paper, we reported on the discovery of more than a hundred new Cepheid variables in the Sculptor Group spiral NGC 300 from wide-field images taken in the B and V photometric bands at ESO/La Silla. In this paper, we present additional VI data, derive improved periods and mean magnitudes for the variables, and construct period-luminosity relations in the V, I and the reddening-independent (V-I) Wesenheit bands using 58 Cepheid variables with periods between 11 and 90 days. We obtain tightly defined relations, and by fitting the slopes determined for the LMC Cepheids by the OGLE II Project we obtain reddening-corrected distances to the galaxy in all bands. We adopt as our best value the distance derived from the reddening-free Wesenheit magnitudes, which is 26.43 ±\pm 0.04 (random) ±\pm 0.05 (systematic) mag. We argue that our current distance result for NGC 300 is the most accurate which has so far been obtained using Cepheid variables, and that it is largely free from systematic effects due to metallicity, blending, and sample selection. It agrees very well with the recent distance determination from the tip of the red giant branch method obtained from HST data by Butler et al. (2004), and it is consistent with the Cepheid distance to NGC 300 which was derived by Freedman et al. (2001) from CCD photometry of a smaller sample of stars.Comment: Latex, Astronomical Journal in pres

    The EFIGI catalogue of 4458 nearby galaxies with detailed morphology

    Get PDF
    Accepted for publication in Astronomy and Astrophysics, 27 pages, 7 tables, 32 colour figures. Data available at http://www.efigi.orgInternational audienceNow that large databases of resolved galaxy images are provided by modern imaging surveys, advanced morphological studies can be envisioned, urging for well defined calibration samples. We present the EFIGI catalogue, a multiwavelength database specifically designed for a dense sampling of all Hubble types. The catalogue merges data from standard surveys and catalogues (Principal Galaxy Catalogue, Sloan Digital Sky Survey, Value-Added Galaxy Catalogue, HyperLeda, and the NASA Extragalactic Database) and provides detailed morphological information. Imaging data are obtained from the SDSS DR4 in the u, g, r, i, and z bands for a sample of 4458 PGC galaxies, whereas photometric and spectroscopic data are obtained from the SDSS DR5 catalogue. Point-Spread Function models are derived in all five bands. Composite colour images of all objects are visually examined by a group of astronomers, and galaxies are staged along the Hubble sequence and classified according to 16 morphological attributes describing their structure, texture, as well as environment and appearance on a five-level scale. The EFIGI Hubble sequence shows remarkable agreement with the RC3 Revised Hubble Sequence. The main characteristics and reliability of the catalogue are examined, including photometric completeness, type mix, systematic trends and correlations. The final EFIGI database is a large sub-sample of the local Universe, with a dense sampling of Sd, Sdm, Sm and Im types compared to magnitude-limited catalogues. We estimate the photometric catalogue to be more than ~ 80% complete for galaxies with 10 < g < 14. More than 99.5% of EFIGI galaxies have a known redshift in the HyperLeda and NED databases

    The Araucaria Project. First Cepheid Distance to the Sculptor Group Galaxy NGC 7793 from Variables discovered in a Wide-Field Imaging Survey

    Full text link
    We have detected, for the first time, Cepheid variables in the Sculptor Group spiral galaxy NGC 7793. From wide-field images obtained in the optical V and I bands on 56 nights in 2003-2005, we have discovered 17 long-period (24-62 days) Cepheids whose periods and mean magnitudes define tight period-luminosity relations. We use the (V-I) Wesenheit index to determine a reddening-free true distance modulus to NGC 7793 of 27.68 +- 0.05 mag (internal error) +- 0.08 mag (systematic error). The comparison of the reddened distance moduli in V and I with the one derived from the Wesenheit magnitude indicates that the Cepheids in NGC 7793 are affected by an average total reddening of E(B-V)=0.08 mag, 0.06 of which is produced inside the host galaxy. As in the earlier Cepheid studies of the Araucaria Project, the reported distance is tied to an assumed LMC distance modulus of 18.50. The quoted systematic uncertainty takes into account effects like blending and possible inhomogeneous filling of the Cepheid instability strip on the derived distance. The reported distance value does not depend on the (unknown) metallicity of the Cepheids according to recent theoretical and empirical results. Our Cepheid distance is shorter, but within the errors consistent with the distance to NGC 7793 determined earlier with the TRGB and Tully-Fisher methods. The NGC 7793 distance of 3.4 Mpc is almost identical to the one our project had found from Cepheid variables for NGC 247, another spiral member of the Sculptor Group located close to NGC 7793 on the sky. Two other conspicuous spiral galaxies in the Sculptor Group, NGC 55 and NGC 300, are much nearer (1.9 Mpc), confirming the picture of a very elongated structure of the Sculptor Group in the line of sight put forward by Jerjen et al. and others.Comment: AJ in pres

    APERO: A PipelinE to Reduce Observations -- Demonstration with SPIRou

    Full text link
    With the maturation of near-infrared high-resolution spectroscopy, especially when used for precision radial velocity, data reduction has faced unprecedented challenges in terms of how one goes from raw data to calibrated, extracted, and corrected data with required precisions of thousandths of a pixel. Here we present APERO (A PipelinE to Reduce Observations), specifically focused on SPIRou, the near-infrared spectropolarimeter on the Canada--France--Hawaii Telescope (SPectropolarim\`etre InfraROUge, CFHT). In this paper, we give an overview of APERO and detail the reduction procedure for SPIRou. APERO delivers telluric-corrected 2D and 1D spectra as well as polarimetry products. APERO enables precise stable radial velocity measurements on sky (via the LBL algorithm), good to at least ~2 m/s over the current 5-year lifetime of SPIRou.Comment: Accepted for publication in PASP. 55 pages, 29 figures, 10 pages of Appendice

    Comprehensive High-resolution Chemical Spectroscopy of Barnard's Star with SPIRou

    Full text link
    Determination of fundamental parameters of stars impacts all fields of astrophysics, from galaxy evolution to constraining the internal structure of exoplanets. This paper presents a detailed spectroscopic analysis of Barnard's star that compares an exceptionally high-quality (signal-to-noise ratio of >>2500 in the HH band), high-resolution NIR spectrum taken with CFHT/SPIRou to PHOENIX-ACES stellar atmosphere models. The observed spectrum shows thousands of lines not identified in the models with a similar large number of lines present in the model but not in the observed data. We also identify several other caveats such as continuum mismatch, unresolved contamination and spectral lines significantly shifted from their expected wavelengths, all of these can be a source of bias for abundance determination. Out of >104>10^4 observed lines in the NIR that could be used for chemical spectroscopy, we identify a short list of a few hundred lines that are reliable. We present a novel method for determining the effective temperature and overall metallicity of slowly-rotating M dwarfs that uses several groups of lines as opposed to bulk spectral fitting methods. With this method, we infer TeffT_{\rm eff} = 3231 ±\pm 21 K for Barnard's star, consistent with the value of 3238 ±\pm 11 K inferred from the interferometric method. We also provide abundance measurements of 15 different elements for Barnard's star, including the abundances of four elements (K, O, Y, Th) never reported before for this star. This work emphasizes the need to improve current atmosphere models to fully exploit the NIR domain for chemical spectroscopy analysis.Comment: 24 pages, 18 figures, submitted to Ap

    Reddening and Extinction Toward the Galactic Bulge from OGLE-III: The Inner Milky Way's Rv ~ 2.5 Extinction Curve

    Full text link
    We combine VI photometry from OGLE-III with VVV and 2MASS measurements of E(J-K_{s}) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well-fit by the relation A_{I} = 0.7465*E(V-I) + 1.3700*E(J-K_{s}), or, equivalently, A_{I} = 1.217*E(V-I)(1+1.126*(E(J-K_{s})/E(V-I)-0.3433)). The optical and near-IR reddening law toward the inner Galaxy approximately follows an R_{V} \approx 2.5 extinction curve with a dispersion {\sigma}_{R_{V}} \approx 0.2, consistent with extragalactic investigations of the hosts of type Ia SNe. Differential reddening is shown to be significant on scales as small as as our mean field size of 6', with the 1{\sigma} dispersion in reddening averaging 9% of total reddening for our fields. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be (M_{I,RC}, \sigma_{I,RC,0}, (V-I)_{RC,0}, \sigma_{(V-I)_{RC}}, (J-K_{s})_{RC,0}) = (-0.12, 0.09, 1.06, 0.121, 0.66). Our measurements of the RC brightness, brightness dispersion and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20 kpc, resolving previous discrepancies in distance determinations to the bulge based on I-band observations. We measure an upper bound on the tilt {\alpha} \approx 40{\deg}. between the bar's major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at {\alpha} \approx 25{\deg}. The number of RC stars suggests a total stellar mass for the Galactic bulge of 2.0*10^{10} M_{\odot}, if one assumes a Salpeter IMF.Comment: 61 Pages, 21 Figures, 4 Tables, Submitted to The Astrophysical Journal and modified as per a referee report. Includes reddening, reddening law, differential reddening, mean distance, dispersion in distance, surface density of stars and errors thereof for ~9,000 bulge sightlines. For a brief video explaining the key result of this paper, see http://www.youtube.com/user/OSUAstronom

    SpitzerSpitzer Parallax of OGLE-2018-BLG-0596: A Low-mass-ratio Planet around an M-dwarf

    Full text link
    We report the discovery of a SpitzerSpitzer microlensing planet OGLE-2018-BLG-0596Lb, with preferred planet-host mass ratio q∌2×10−4q \sim 2\times10^{-4}. The planetary signal, which is characterized by a short (∌1 day)(\sim 1~{\rm day}) "bump" on the rising side of the lensing light curve, was densely covered by ground-based surveys. We find that the signal can be explained by a bright source that fully envelops the planetary caustic, i.e., a "Hollywood" geometry. Combined with the source proper motion measured from GaiaGaia, the SpitzerSpitzer satellite parallax measurement makes it possible to precisely constrain the lens physical parameters. The preferred solution, in which the planet perturbs the minor image due to lensing by the host, yields a Uranus-mass planet with a mass of Mp=13.9±1.6 M⊕M_{\rm p} = 13.9\pm1.6~M_{\oplus} orbiting a mid M-dwarf with a mass of Mh=0.23±0.03 M⊙M_{\rm h} = 0.23\pm0.03~M_{\odot}. There is also a second possible solution that is substantially disfavored but cannot be ruled out, for which the planet perturbs the major image. The latter solution yields Mp=1.2±0.2 M⊕M_{\rm p} = 1.2\pm0.2~M_{\oplus} and Mh=0.15±0.02 M⊙M_{\rm h} = 0.15\pm0.02~M_{\odot}. By combining the microlensing and GaiaGaia data together with a Galactic model, we find in either case that the lens lies on the near side of the Galactic bulge at a distance DL∌6±1 kpcD_{\rm L} \sim 6\pm1~{\rm kpc}. Future adaptive optics observations may decisively resolve the major image/minor image degeneracy.Comment: 34 pages, 8 figures, Submitted to AAS journa

    CO or no CO? Narrowing the CO abundance constraint and recovering the H2O detection in the atmosphere of WASP-127 b using SPIRou

    Full text link
    Precise measurements of chemical abundances in planetary atmospheres are necessary to constrain the formation histories of exoplanets. A recent study of WASP-127b, a close-in puffy sub-Saturn orbiting its solar-type host star in 4.2 d, using HST and Spitzer revealed a feature-rich transmission spectrum with strong excess absorption at 4.5 um. However, the limited spectral resolution and coverage of these instruments could not distinguish between CO and/or CO2 absorption causing this signal, with both low and high C/O ratio scenarios being possible. Here we present near-infrared (0.9--2.5 um) transit observations of WASP-127 b using the high-resolution SPIRou spectrograph, with the goal to disentangle CO from CO2 through the 2.3 um CO band. With SPIRou, we detect H2O at a t-test significance of 5.3 sigma and observe a tentative (3 sigma) signal consistent with OH absorption. From a joint SPIRou + HST + Spitzer retrieval analysis, we rule out a CO-rich scenario by placing an upper limit on the CO abundance of log10[CO]<-4.0, and estimate a log10[CO2] of -3.7^(+0.8)_(-0.6), which is the level needed to match the excess absorption seen at 4.5um. We also set abundance constraints on other major C-, O-, and N-bearing molecules, with our results favoring low C/O (0.10^(+0.10)_(-0.06)), disequilibrium chemistry scenarios. We further discuss the implications of our results in the context of planet formation. Additional observations at high and low-resolution will be needed to confirm these results and better our understanding of this unusual world.Comment: 23 pages, 13 figures, Submitted for publication in the Monthly Notice of the Royal Astronomical Societ
    • 

    corecore