41 research outputs found

    Contrasting Roles of Mitogen-Activated Protein Kinases in Cellular Entry and Replication of Hepatitis C Virus: MKNK1 Facilitates Cell Entry

    Get PDF
    The human kinome comprises over 800 individual kinases. These contribute in multiple ways to regulation of cellular metabolism and may have direct and indirect effects on virus replication. Kinases are tempting therapeutic targets for drug development, but achieving sufficient specificity is often a challenge for chemical inhibitors. While using inhibitors to assess whether c-Jun N-terminal (JNK) kinases regulate hepatitis C virus (HCV) replication, we encountered unexpected off-target effects that led us to discover a role for a mitogen-activated protein kinase (MAPK)-related kinase, MAPK interacting serine/threonine kinase 1 (MKNK1), in viral entry. Two JNK inhibitors, AS601245 and SP600125, as well as RNA interference (RNAi)-mediated knockdown of JNK1 and JNK2, enhanced replication of HCV replicon RNAs as well as infectious genome-length RNA transfected into Huh-7 cells. JNK knockdown also enhanced replication following infection with cell-free virus, suggesting that JNK actively restricts HCV replication. Despite this, AS601245 and SP600125 both inhibited viral entry. Screening of a panel of inhibitors targeting kinases that may be modulated by off-target effects of AS601245 and SP600125 led us to identify MKNK1 as a host factor involved in HCV entry. Chemical inhibition or siRNA knockdown of MKNK1 significantly impaired entry of genotype 1a HCV and HCV-pseudotyped lentiviral particles (HCVpp) in Huh-7 cells but had only minimal impact on viral RNA replication or cell proliferation and viability. We propose a model by which MKNK1 acts to facilitate viral entry downstream of the epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), both of which have been implicated in the entry process

    Broadly neutralizing antibodies from an individual that naturally cleared multiple hepatitis c virus infections uncover molecular determinants for E2 targeting and vaccine design

    Get PDF
    Cumulative evidence supports a role for neutralizing antibodies contributing to spontaneous viral clearance during acute hepatitis C virus (HCV) infection. Information on the timing and specificity of the B cell response associated with clearance is crucial to inform vaccine design. From an individual who cleared three sequential HCV infections with genotypes 1b, 1a and 3a strains, respectively, we employed peripheral B cells to isolate and characterize neutralizing human monoclonal antibodies (HMAbs) to HCV after the genotype 1 infections. The majority of isolated antibodies, designated as HMAbs 212, target conformational epitopes on the envelope glycoprotein E2 and bound broadly to genotype 1–6 E1E2 proteins. Further, some of these antibodies showed neutralization potential against cultured genotype 1–6 viruses. Competition studies with defined broadly neutralizing HCV HMAbs to epitopes in distinct clusters, designated antigenic domains B, C, D and E, revealed that the selected HMAbs compete with B, C and D HMAbs, previously isolated from subjects with chronic HCV infections. Epitope mapping studies revealed domain B and C specificity of these HMAbs 212. Sequential serum samples from the studied subject inhibited the binding of HMAbs 212 to autologous E2 and blocked a representative domain D HMAb. The specificity of this antibody response appears similar to that observed during chronic infection, suggesting that the timing and affinity maturation of the antibody response are the critical determinants in successful and repeated viral clearance. While additional studies should be performed for individuals with clearance or persistence of HCV, our results define epitope determinants for antibody E2 targeting with important implications for the development of a B cell vaccine.</div

    Immunological responses following administration of a genotype 1a/1b/2/3a quadrivalent HCV VLP vaccine

    Get PDF
    The significant public health problem of Hepatitis C virus (HCV) has been partially addressed with the advent of directly acting antiviral agents (DAAs). However, the development of an effective preventative vaccine would have a significant impact on HCV incidence and would represent a major advance towards controlling and possibly eradicating HCV globally. We previously reported a genotype 1a HCV viral-like particle (VLP) vaccine that produced neutralizing antibodies (NAb) and T cell responses to HCV. To advance this approach, we produced a quadrivalent genotype 1a/1b/2a/3a HCV VLP vaccine to produce broader immune responses. We show that this quadrivalent vaccine produces antibody and NAb responses together with strong T and B cell responses in vaccinated mice. Moreover, selective neutralizing human monoclonal antibodies (HuMAbs) targeting conserved antigenic domain B and D epitopes of the E2 protein bound strongly to the HCV VLPs, suggesting that these critical epitopes are expressed on the surface of the particles. Our findings demonstrate that a quadrivalent HCV VLP based vaccine induces broad humoral and cellular immune responses that will be necessary for protection against HCV. Such a vaccine could provide a substantial addition to highly active antiviral drugs in eliminating HCV.D. Christiansen, L. Earnest-Silveira, B. Chua, P. Meuleman, I. Boo, B. Grubor-Bauk, D.C. Jackson, Z.Y. Keck, S.K.H. Foung, H.E. Drummer, E.J. Gowans, J. Torres

    Human Monoclonal Antibodies to a Novel Cluster of Conformational Epitopes on HCV E2 with Resistance to Neutralization Escape in a Genotype 2a Isolate

    Get PDF
    The majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other regions that will be relevant for vaccine design, we employed yeast surface display of antibodies that bound to genotype 1a H77C E2 mutant proteins containing a substitution either at Y632A (to avoid selecting non-neutralizing antibodies) or D535A. A panel of nine human monoclonal antibodies (HMAbs) was isolated and designated as HC-84-related antibodies. Each HMAb neutralized cell culture infectious HCV (HCVcc) with genotypes 1–6 envelope proteins with varying profiles, and each inhibited E2 binding to the viral receptor CD81. Five of these antibodies neutralized representative genotypes 1–6 HCVcc. Epitope mapping identified a cluster of overlapping epitopes that included nine contact residues in two E2 regions encompassing aa418–446 and aa611–616. Effect on virus entry was measured using H77C HCV retroviral pseudoparticles, HCVpp, bearing an alanine substitution at each of the contact residues. Seven of ten mutant HCVpp showed over 90% reduction compared to wild-type HCVpp and two others showed approximately 80% reduction. Interestingly, four of these antibodies bound to a linear E2 synthetic peptide encompassing aa434–446. This region on E2 has been proposed to elicit non-neutralizing antibodies in humans that interfere with neutralizing antibodies directed at an adjacent E2 region from aa410–425. The isolation of four HC-84 HMAbs binding to the peptide, aa434–446, proves that some antibodies to this region are to highly conserved epitopes mediating broad virus neutralization. Indeed, when HCVcc were passaged in the presence of each of these antibodies, virus escape was not observed. Thus, the cluster of HC-84 epitopes, designated as antigenic domain D, is relevant for vaccine design for this highly diverse virus

    Antigenicity and immunogenicity of differentially glycosylated HCV E2 envelope proteins expressed in mammalian and insect cells

    Get PDF
    Development of a prophylactic vaccine for hepatitis C virus (HCV) remains a global health challenge. Cumulative evidence supports the importance of antibodies targeting the HCV E2 envelope glycoprotein to facilitate viral clearance. However, a significant challenge for a B cell-based vaccine is focusing the immune response on conserved E2 epitopes capable of eliciting neutralizing antibodies not associated with viral escape. We hypothesized that glycosylation might influence the antigenicity and immunogenicity of E2. Accordingly, we performed head-to-head molecular, antigenic and immunogenic comparisons of soluble E2 (sE2) produced in (i) mammalian (HEK293) cells, which confer mostly complex and high mannose type glycans; and (ii) insect (Sf9) cells, which impart mainly paucimannose type glycans. Mass spectrometry demonstrated that all 11 predicted N-glycosylation sites were utilized in both HEK293- and Sf9-derived sE2, but that N-glycans in insect sE2 were on average smaller and less complex. Both proteins bound CD81 and were recognized by conformation-dependent antibodies. Mouse immunogenicity studies revealed that similar polyclonal antibody responses were generated against antigenic domains A–E of E2. Although neutralizing antibody titers showed that Sf9-derived sE2 induced moderately stronger responses than HEK293-derived sE2 against the homologous HCV H77c isolate, the two proteins elicited comparable neutralization titers against heterologous isolates. Given that global alteration of HCV E2 glycosylation by expression in different hosts did not appreciably affect antigenicity or overall immunogenicity, a more productive approach to increasing the antibody response to neutralizing epitopes may be complete deletion, rather than just modification, of specific N-glycans proximal to these epitopes

    Structure-Based Design of Hepatitis C Virus E2 Glycoprotein Improves Serum Binding and Cross-Neutralization

    Get PDF
    Copyright © 2020 American Society for Microbiology. An effective vaccine for hepatitis C virus (HCV) is a major unmet need, and it requires an antigen that elicits immune responses to key conserved epitopes. Based on structures of antibodies targeting HCV envelope glycoprotein E2, we designed immunogens to modulate the structure and dynamics of E2 and favor induction of broadly neutralizing antibodies (bNAbs) in the context of a vaccine. These designs include a point mutation in a key conserved antigenic site to stabilize its conformation, as well as redesigns of an immunogenic region to add a new N-glycosylation site and mask it from antibody binding. Designs were experimentally characterized for binding to a panel of human monoclonal antibodies (HMAbs) and the coreceptor CD81 to confirm preservation of epitope structure and preferred antigenicity profile. Selected E2 designs were tested for immunogenicity in mice, with and without hypervariable region 1, which is an immunogenic region associated with viral escape. One of these designs showed improvement in polyclonal immune serum binding to HCV pseudoparticles and neutralization of isolates associated with antibody resistance. These results indicate that antigen optimization through structure-based design of the envelope glycoproteins is a promising route to an effective vaccine for HCV.IMPORTANCE Hepatitis C virus infects approximately 1% of the world's population, and no vaccine is currently available. Due to the high variability of HCV and its ability to actively escape the immune response, a goal of HCV vaccine design is to induce neutralizing antibodies that target conserved epitopes. Here, we performed structure-based design of several epitopes of the HCV E2 envelope glycoprotein to engineer its antigenic properties. Designs were tested in vitro and in vivo, demonstrating alteration of the E2 antigenic profile in several cases, and one design led to improvement of cross-neutralization of heterologous viruses. This represents a proof of concept that rational engineering of HCV envelope glycoproteins can be used to modulate E2 antigenicity and optimize a vaccine for this challenging viral target

    Diffusion patterns of new anti-diabetic drugs into hospitals in Taiwan: the case of Thiazolidinediones for diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diffusion of new drugs in the health care market affects patients' access to new treatment options and health care expenditures. We examined how a new drug class for diabetes mellitus, thiazolidinediones (TZDs), diffused in the health care market in Taiwan.</p> <p>Methods</p> <p>Assuming that monthly hospital prescriptions of TZDs could serve as a micro-market to perform drug penetration studies, we retrieved monthly TZD prescription data for 580 hospitals in Taiwan from Taiwan's National Health Insurance Research Database for the period between March 1, 2001 and December 31, 2005. Three diffusion parameters, time to adoption, speed of penetration (monthly growth on prescriptions), and peak penetration (maximum monthly prescription) were evaluated. Cox proportional hazards model and quantile regressions were estimated for analyses on the diffusion parameters.</p> <p>Results</p> <p>Prior hospital-level pharmaceutical prescription concentration significantly deterred the adoption of the new drug class (HR: 0.02, 95%CI = 0.01 to 0.04). Adoption of TZDs was slower in district hospitals (HR = 0.43, 95%CI = 0.24 to 0.75) than medical centers and faster in non-profit hospitals than public hospitals (HR = 1.79, 95%CI = 1.23 to 2.61). Quantile regression showed that penetration speed was associated with a hospital's prior anti-diabetic prescriptions (25%Q: 18.29; 50%Q: 25.57; 75%Q: 30.97). Higher peaks were found in hospitals that had adopted TZD early (25%Q: -40.33; 50%Q: -38.65; 75%Q: -32.29) and in hospitals in which the drugs penetrated more quickly (25%Q: 16.53; 50%Q: 24.91; 75%Q: 31.50).</p> <p>Conclusions</p> <p>Medical centers began to prescribe TZDs earlier, and they prescribed more TZDs at a faster pace. The TZD diffusion patterns varied among hospitals depending accreditation level, ownership type, and prescription volume of Anti-diabetic drugs.</p

    Diffusion patterns of new anti-diabetic drugs into hospitals in Taiwan: the case of Thiazolidinediones for diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diffusion of new drugs in the health care market affects patients' access to new treatment options and health care expenditures. We examined how a new drug class for diabetes mellitus, thiazolidinediones (TZDs), diffused in the health care market in Taiwan.</p> <p>Methods</p> <p>Assuming that monthly hospital prescriptions of TZDs could serve as a micro-market to perform drug penetration studies, we retrieved monthly TZD prescription data for 580 hospitals in Taiwan from Taiwan's National Health Insurance Research Database for the period between March 1, 2001 and December 31, 2005. Three diffusion parameters, time to adoption, speed of penetration (monthly growth on prescriptions), and peak penetration (maximum monthly prescription) were evaluated. Cox proportional hazards model and quantile regressions were estimated for analyses on the diffusion parameters.</p> <p>Results</p> <p>Prior hospital-level pharmaceutical prescription concentration significantly deterred the adoption of the new drug class (HR: 0.02, 95%CI = 0.01 to 0.04). Adoption of TZDs was slower in district hospitals (HR = 0.43, 95%CI = 0.24 to 0.75) than medical centers and faster in non-profit hospitals than public hospitals (HR = 1.79, 95%CI = 1.23 to 2.61). Quantile regression showed that penetration speed was associated with a hospital's prior anti-diabetic prescriptions (25%Q: 18.29; 50%Q: 25.57; 75%Q: 30.97). Higher peaks were found in hospitals that had adopted TZD early (25%Q: -40.33; 50%Q: -38.65; 75%Q: -32.29) and in hospitals in which the drugs penetrated more quickly (25%Q: 16.53; 50%Q: 24.91; 75%Q: 31.50).</p> <p>Conclusions</p> <p>Medical centers began to prescribe TZDs earlier, and they prescribed more TZDs at a faster pace. The TZD diffusion patterns varied among hospitals depending accreditation level, ownership type, and prescription volume of Anti-diabetic drugs.</p

    A learning analytics approach to the evaluation of an online learning package in a Hong Kong University

    No full text
    202012 bcrcVersion of RecordPublishe
    corecore