95 research outputs found

    High resolution mapping of the recombination landscape of the phytopathogen Fusarium graminearum suggests two-speed genome evolution

    Get PDF
    International audienceRecombination is a major evolutionary force, increasing genetic diversity and permitting efficient coevolution of fungal pathogen(s) with their host(s). The ascomycete Fusarium graminearum is a devastating pathogen of cereal crops, and can contaminate food and feed with harmful mycotoxins. Previous studies have suggested a high adaptive potential of this pathogen, illustrated by an increase in pathogenicity and resistance to fungicides. In this study, we provide the first detailed picture of the crossover events occurring during meiosis and discuss the role of recombination in pathogen evolution. An experimental recombinant population (n = 88) was created and genotyped using 1306 polymorphic markers obtained from restriction site-associated DNA sequencing (RAD-seq) and aligned to the reference genome. The construction of a high-density linkage map, anchoring 99% of the total length of the reference genome, allowed the identification of 1451 putative crossovers, positioned at a median resolution of 24 kb. The majority of crossovers (87.2%) occurred in a relatively small portion of the genome (30%). All chromosomes demonstrated recombination-active sections, which had a near 15-fold higher crossover rate than non-active recombinant sections. The recombination rate showed a strong positive correlation with nucleotide diversity, and recombination-active regions were enriched for genes with a putative role in host-pathogen interaction, as well as putative diversifying genes. Our results confirm the preliminary analysis observed in other F. graminearum strains and suggest a conserved 'two-speed' recombination landscape. The consequences with regard to the evolutionary potential of this major fungal pathogen are also discussed

    Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Get PDF
    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost andduringmushroomformation.The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation aremore highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics

    Genetic linkage mapping in fungi: current state, applications, and future trends

    No full text
    International audienceGenetic mapping is a basic tool for eukaryotic genomic research. Linkage maps provide insights into genome organization and can be used for genetic studies of traits of interest. A genetic linkage map is a suitable support for the anchoring of whole genome sequences. It allows the localization of genes of interest or quantitative trait loci (QTL) and map-based cloning. While genetic mapping has been extensively used in plant or animal models, this discipline is more recent in fungi. The present article reviews the current status of genetic linkage map research in fungal species. The process of linkage mapping is detailed, from the development of mapping populations to the construction of the final linkage map, and illustrated based on practical examples. The range of specific applications in fungi is browsed, such as the mapping of virulence genes in pathogenic species or the mapping of agronomically relevant QTL in cultivated edible mushrooms. Future prospects are finally discussed in the context of the most recent advances in molecular techniques and the release of numerous fungal genome sequences

    Relationship between yield components and partial resistance to Lecanicillium fungicola in the button mushroom, Agaricus bisporus, assessed by quantitative trait locus mapping

    No full text
    International audienceDry bubble, caused by Lecanicillium fungicola, is one of the most detrimental diseases affecting button mushroom cultivation. In a previous study, we demonstrated that breeding for resistance to this pathogen is quite challenging due to its quantitative inheritance. A second-generation hybrid progeny derived from an intervarietal cross between a wild strain and a commercial cultivar was characterized for L. fungicola resistance under artificial inoculation in three independent experiments. Analysis of quantitative trait loci (QTL) was used to determine the locations, numbers, and effects of genomic regions associated with dry-bubble resistance. Four traits related to resistance were analyzed. Two to four QTL were detected per trait, depending on the experiment. Two genomic regions, on linkage group X (LGX) and LGVIII, were consistently detected in the three experiments. The genomic region on LGX was detected for three of the four variables studied. The total phenotypic variance accounted for by all QTL ranged from 19.3% to 42.1% over all traits in all experiments. For most of the QTL, the favorable allele for resistance came from the wild parent, but for some QTL, the allele that contributed to a higher level of resistance was carried by the cultivar. Comparative mapping with QTL for yield-related traits revealed five colocations between resistance and yield component loci, suggesting that the resistance results from both genetic factors and fitness expression. The consequences for mushroom breeding programs are discussed

    QTL for resistance to Trichoderma lytic enzymes and metabolites in Agaricus bisporus

    No full text
    National audienceTrichoderma aggressivum leads to severe crop losses in Agaricus bisporus cultures. The development of strain resistant to this competitor is an alternative to the use of chemicals. One of the interacting components of the putative system of resistance is the lack of susceptibility to the growth limiting compounds produced by Trichoderma sp. Wide variation for this trait has been previously demonstrated, with few strains able to resist to Trichoderma lytic enzymes and metabolites. For exploiting such a resistance in breeding programs, the knowledge of its genetic basis is a prerequisite. Therefore, QTL analysis was used to determine the number, effects and location of genomic regions associated with tolerance to Trichoderma lytic enzymes and metabolites in a hybrid progeny of A. bisporus. An in vitro experiment using sequential cultures on media supplemented or not with a commercial product Lysing Enzyme was used. The mycelium growth rate in control condition, the level of tolerance and the capacity of adaptation were the traits used for QTL detection. In total for all the traits, seven QTLs were detected distributed on four genomic regions. Two clusters of QTLs related to several traits and two other trait-specific QTLs were identified. A genomic region on LGIV was detected for each trait, with the highest LOD score value and genetic effects. Our results showed that tolerance to Trichoderma lytic enzymes and metabolites was tightly related to mycelium growth ability. Consequences for mushroom breeding program are discussed

    Novel microsatellite markers suitable for genetic studies in the white button mushroom Agaricus bisporus

    No full text
    International audienceCo-dominant microsatellite molecular markers were obtained from the Agaricus bisporus cultivated mushroom. Their potential for both the molecular characterisation of commercial strains and the monitoring of the intraspecific genetic variation was demonstrated. The analysis of 673 unique sequences issued from public database and 59 from an enriched A. bisporus genomic library resulted in the development of a total of 33 single sequence repeat or microsatellite (SSR) markers. Their usefulness for genetic analysis was assessed on 28 strains, which include six cultivars representative of traditional lineage, two hybrids and 20 strains originating from wild populations. A. bisporus SSR markers displayed each from two to ten alleles, with an average of 5.6 alleles per locus. The observed heterozygosity ranged from 0 to 0.88. Cluster analysis resulting from SSR fingerprintings was in agreement with published A. bisporus population structure. A combination of only three selected SSR markers was sufficient to discriminate unambiguously 27 out of 28 distinct genotypes. However, the two genetically related hybrids were not distinguishable. Multiplexing was tested, and up to seven loci could be genotyped simultaneously. We are therefore reporting the first development in A. bisporus of a set of microsatellite markers powerful and suitable for genetic analysis

    Natural biodiversity and molecular genetics for breeding Agaricus sp.

    No full text
    International audienc
    • …
    corecore