18 research outputs found

    Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates

    Get PDF
    Physical trapping of a hydrophobic liquid oil in a matrix of water-soluble biopolymers was achieved using a facile two-step process by first formulating a surfactant-free oil-in-water emulsion stabilized by biopolymers (a protein and a polysaccharide) followed by complete removal of the water phase (by either high- or low-temperature drying of the emulsion) resulting in structured solid systems containing a high concentration of liquid oil (above 97 wt %). The microstructure of these systems was revealed by confocal and cryo-scanning electron microscopy, and the effect of biopolymer concentrations on the consistency of emulsions as well as the dried product was evaluated using a combination of small-amplitude oscillatory shear rheometry and large deformation fracture studies. The oleogel prepared by shearing the dried product showed a high gel strength as well as a certain degree of thixotropic recovery even at high temperatures. Moreover, the reversibility of the process was demonstrated by shearing the dried product in the presence of water to obtain reconstituted emulsions with rheological properties comparable to those of the fresh emulsion

    A randomized, double-blind, placebo-controlled investigation of BCc1 nanomedicine effect on survival and quality of life in metastatic and non-metastatic gastric cancer patients

    Get PDF
    Background: Currently, the main goal of cancer research is to increase longevity of patients suffering malignant cancers. The promising results of BCc1 in vitro and vivo experiments made us look into the effect of BCc1 nanomedicine on patients with cancer in a clinical trial. Methods: The present investigation was a randomized, double-blind, placebo-controlled, parallel, and multicenter study in which 123 patients (30-to-85-year-old men and women) with metastatic and non-metastatic gastric cancer, in two separate groups of BCc1 nanomedicine or placebo, were selected using a permuted block randomization method. For metastatic and non-metastatic patients, a daily dose of 3000 and 1500 mg was prescribed, respectively. Overall survival (OS) as the primary endpoint and quality of life (measured using QLQ-STO22) and adverse effects as the secondary endpoints were studied. Results: In metastatic patients, the median OS was significantly higher in BCc1 nanomedicine (174 days 95% confidence interval (CI) 82.37-265.62) than in placebo (62 days 95% CI 0-153.42); hazard ratio (HR): 0.5 95% CI 0.25-0.98; p = 0.046. In non-metastatic patients, the median OS was significantly higher in BCc1 nanomedicine (529 days 95% CI 393.245-664.75) than in placebo (345 days 95% CI 134.85-555.14); HR: 0.324 95% CI 0.97-1.07; p = 0.066. The QLQ-STO22 assessment showed a mean difference improvement of 3.25 and 2.29 (p value > 0.05) in BCc1 nanomedicine and a mean difference deterioration of - 4.42 and - 3 (p-value < 0.05) in placebo with metastatic and non-metastatic patients, respectively. No adverse effects were observed. Conclusion: The findings of this trial has provided evidence for the potential capacity of BCc1 nanomedicine for treatment of cancer. Trial registration IRCTID, IRCT2017101935423N1. Registered on 19 October 2017, http://www.irct.ir/ IRCT2017101935423N1 © 2019 The Author(s)

    The role of interdroplet interaction in the physics of highly concentrated emulsions

    No full text
    The osmotic pressure and shear modulus of highly concentrated emulsions were modelled by considering both interfacial energy and interdroplet interaction. This was performed for two- and three-dimensional cases and by optimization and approximation methods of predicting film thickness. The results show that even a small source of interaction can result in non-superimposition of scaled osmotic pressure and shear modulus by Laplace pressure for different droplet sizes, and also significant deviation from the models which consider interfacial interaction as the sole source of energy. The model was used to explain the reciprocal squared diameter dependency of elastic modulus: an interaction similar to the van der Waals type can be responsible for this observation. The model can also be used to analyze the interdroplet interactions in highly concentrated emulsions

    Active Microwave Thermography for Defect Detection of CFRP-Strengthened Cement-Based Materials

    No full text
    Nondestructive testing (NDT) of rehabilitated cement-based materials (RCMs) with carbon-fiber-reinforced polymer (CFRP) composites is quite important in the transportation and infrastructure industries. Among various NDT methods, active microwave thermography (AMT) has shown good potential. This method uses microwave energy to heat a structure of interest, and subsequently the surface thermal profile is measured using a thermal camera. In this paper, the application of AMT for defect detection (unbond, delamination, and crack) in CFRP composites used in RCMs is presented. More specifically, the effect of defect size and depth and polarization on the resultant surface thermal profile with defects is first studied through simulation. The effect of polarization on detection of defects with regard to the orientation of CFRP fibers is also experimentally investigated. Finally, a quantitative analysis of the measured results based on the thermal contrast and signal-to-noise ratio (SNR) for all the three aforementioned defect types is presented. The results show that the SNR is improved when utilizing perpendicular (compared with parallel) polarization, and that the maximum effective heating time is ~ 60s, even for small defects

    Inbuilt Multiband Microstrip Antenna for Portable Devices

    No full text
    corecore