6 research outputs found

    In vitro impact of five pesticides alone or in combination on human intestinal cell line Caco-2

    Get PDF
    AbstractIn Burkina Faso, as in most Sahelian countries, the failure to follow good agricultural practices coupled with poor soil and climate conditions in the locust control context lead to high environmental contaminations with pesticide residues. Thus, consumers being orally exposed to a combination of multiple pesticide residues through food and water intake, the digestive tract is a tissue susceptible to be directly exposed to these food contaminants. The aim of our work was to compare in vitro the impact of five desert locust control pesticides (Deltamethrin DTM, Fenitrothion FNT, Fipronil FPN, Lambda-cyalothrine LCT, and Teflubenzuron TBZ) alone and in combination on the human intestinal Caco-2 cells viability and function. Cells were exposed to 0.1–100 μM pesticides for 10 days alone or in mixture (MIX). Our results showed a cytotoxic effect of DTM, FNT, FPN, LCT, and TBZ alone or in combination in human intestinal Caco-2 cells. The most efficient were shown to be FPN and FNT impacting the cell layer integrity and/or barrier function, ALP activity, antioxidant enzyme activity, lipid peroxidation, Akt activation, and apoptosis. The presence of antioxidant reduced lipid peroxidation level and attenuated the pesticides-induced cell toxicity, suggesting that key mechanism of pesticides cytotoxicity may be linked to their pro-oxidative potential. A comparative analysis with the predicted cytotoxic effect of pesticides mixture using mathematical modeling shown that the combination of these pesticides led to synergistic effects rather than to a simple independent or dose addition effect

    Methods of lipid-normalization for multi-tissue stable isotope analyses in tropical tuna

    No full text
    RATIONALE: The bias associated with lipid contents in fish tissues is a recalcitrant topic for trophic studies using stable isotopes. Lipids are depleted in the heavy carbon isotope (C-13) and the lipid content varies considerably among species, tissues and in both time and space. We have applied and assessed different correction methods for tropical tuna tissues. METHODS: We tested two types of normalization methods to deal with variable lipid content in liver, gonads, and white and red muscles of yellowfin, bigeye and skipjack tuna: a chemical extraction using dichloromethane and a mathematical correction based on three modeling approaches (linear, non-linear and mass balance models). We measured isotopic ratios of bulk and lipid-free tissues and assessed the predictive ability of the correction models with the lipid-free measurements. The parameters of the models were estimated from our dataset and from results from published studies on other species. RESULTS: Comparison between bulk, lipid-free and lipid-corrected isotopic ratios demonstrated that (1) chemical extraction using dichloromethane did not affect delta N-15 values; (2) the change in delta C-13 values after extraction was tissue-specific; (3) lipid-normalization models using published parameter estimates failed to predict lipid-corrected delta C-13 values; and (4) linear and non-linear models using parameters estimated for each tissue from our dataset provided accurate delta C-13 predictions for all tissues, and mass balance model for white muscle only. CONCLUSIONS: Models using published estimates for parameters from other species cannot be used. Based on a range of lipid content that do not exceed 45%, we recommend the linear model to correct the bulk delta C-13 values in the investigated tissues but the parameters have to be estimated from a proportion of the original data for which chemical extraction is required and the isotopic values of bulk and lipid-free tissues are measured

    Insights into the role of hepatocyte PPARα activity in response to fasting

    No full text
    The liver plays a central role in the regulation of fatty acid metabolism. Hepatocytes are highly sensitive to nutrients and hormones that drive extensive transcriptional responses. Nuclear hormone receptors are key transcription factors involved in this process. Among these factors, PPARα is a critical regulator of hepatic lipid catabolism during fasting.This study aimed to analyse the wide array of hepatic PPARα-dependent transcriptional responses during fasting. We compared gene expression in male mice with a hepatocyte specific deletion of PPARα and their wild-type littermates in the fed (ad libitum) and 24-h fasted states. Liver samples were acquired, and transcriptome and lipidome analyses were performed.Our data extended and confirmed the critical role of hepatocyte PPARα as a central for regulator of gene expression during starvation. Interestingly, we identified novel PPARα-sensitive genes, including Cxcl-10, Rab30, and Krt23. We also found that liver phospholipid remodelling was a novel fasting-sensitive pathway regulated by PPARα. These results may contribute to investigations on transcriptional control in hepatic physiology and underscore the clinical relevance of drugs that target PPARα in liver pathologies, such as non-alcoholic fatty liver disease

    Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery

    No full text
    corecore