254 research outputs found
Spin effects on neutron star fundamental-mode dynamical tides: phenomenology and comparison to numerical simulations
Gravitational waves from neutron star binary inspirals contain information on strongly-interacting matter in unexplored, extreme regimes. Extracting this requires robust theoretical models of the signatures of matter in the gravitational-wave signals due to spin and tidal effects. In fact, spins can have a significant impact on the tidal excitation of the quasi-normal modes of a neutron star, which is not included in current state-of-the-art waveform models. We develop a simple approximate description that accounts for the Coriolis effect of spin on the tidal excitation of the neutron star's quadrupolar and octupolar fundamental quasi-normal modes and incorporate it in the SEOBNRv4T waveform model. We show that the Coriolis effect introduces only one new interaction term in an effective action in the co-rotating frame of the star, and fix the coefficient by considering the spin-induced shift in the resonance frequencies that has been computed numerically for the mode frequencies of rotating neutron stars in the literature. We investigate the impact of relativistic corrections due to the gravitational redshift and frame-dragging effects, and identify important directions where more detailed theoretical developments are needed in the future. Comparisons of our new model to numerical relativity simulations of double neutron star and neutron star-black hole binaries show improved consistency in the agreement compared to current models used in data analysis
Exploring Outliers in Crowdsourced Ranking for QoE
Outlier detection is a crucial part of robust evaluation for crowdsourceable
assessment of Quality of Experience (QoE) and has attracted much attention in
recent years. In this paper, we propose some simple and fast algorithms for
outlier detection and robust QoE evaluation based on the nonconvex optimization
principle. Several iterative procedures are designed with or without knowing
the number of outliers in samples. Theoretical analysis is given to show that
such procedures can reach statistically good estimates under mild conditions.
Finally, experimental results with simulated and real-world crowdsourcing
datasets show that the proposed algorithms could produce similar performance to
Huber-LASSO approach in robust ranking, yet with nearly 8 or 90 times speed-up,
without or with a prior knowledge on the sparsity size of outliers,
respectively. Therefore the proposed methodology provides us a set of helpful
tools for robust QoE evaluation with crowdsourcing data.Comment: accepted by ACM Multimedia 2017 (Oral presentation). arXiv admin
note: text overlap with arXiv:1407.763
A Novel Convex Relaxation for Non-Binary Discrete Tomography
We present a novel convex relaxation and a corresponding inference algorithm
for the non-binary discrete tomography problem, that is, reconstructing
discrete-valued images from few linear measurements. In contrast to state of
the art approaches that split the problem into a continuous reconstruction
problem for the linear measurement constraints and a discrete labeling problem
to enforce discrete-valued reconstructions, we propose a joint formulation that
addresses both problems simultaneously, resulting in a tighter convex
relaxation. For this purpose a constrained graphical model is set up and
evaluated using a novel relaxation optimized by dual decomposition. We evaluate
our approach experimentally and show superior solutions both mathematically
(tighter relaxation) and experimentally in comparison to previously proposed
relaxations
Estimating outflow masses and velocities in merger simulations:Impact of <i>r</i>-process heating and neutrino cooling
The determination of the mass, composition, and geometry of matter outflows
in black hole-neutron star and neutron star-neutron star binaries is crucial to
current efforts to model kilonovae, and to understand the role of neutron star
merger in r-process nucleosynthesis. In this manuscript, we review the simple
criteria currently used in merger simulations to determine whether matter is
unbound and what the asymptotic velocity of ejected material will be. We then
show that properly accounting for both heating and cooling during r-process
nucleosynthesis is important to accurately predict the mass and kinetic energy
of the outflows. These processes are also likely to be crucial to predict the
fallback timescale of any bound ejecta. We derive a model for the asymptotic
veloicity of unbound matter and binding energy of bound matter that accounts
for both of these effects and that can easily be implemented in merger
simulations. We show, however, that the detailed velocity distribution and
geometry of the outflows can currently only be captured by full 3D fluid
simulations of the outflows, as non-local effect ignored by the simple criteria
used in merger simulations cannot be safely neglected when modeling these
effects. Finally, we propose the introduction of simple source terms in the
fluid equations to approximately account for heating/cooling from r-process
nucleosynthesis in future seconds-long 3D simulations of merger remnants,
without the explicit inclusion of out-of-nuclear statistical equilibrium
reactions in the simulations.Comment: Accepted by Phys.Rev.
Sparsity and cosparsity for audio declipping: a flexible non-convex approach
This work investigates the empirical performance of the sparse synthesis
versus sparse analysis regularization for the ill-posed inverse problem of
audio declipping. We develop a versatile non-convex heuristics which can be
readily used with both data models. Based on this algorithm, we report that, in
most cases, the two models perform almost similarly in terms of signal
enhancement. However, the analysis version is shown to be amenable for real
time audio processing, when certain analysis operators are considered. Both
versions outperform state-of-the-art methods in the field, especially for the
severely saturated signals
Aligned-spin neutron-star-black-hole waveform model based on the effective-one-body approach and numerical-relativity simulations
After the discovery of gravitational waves from binary black holes (BBHs) and binary neutron stars (BNSs) with the LIGO and Virgo detectors, neutron-star--black-holes (NSBHs) are the natural next class of binary systems to be observed. In this work, we develop a waveform model for aligned-spin neutron-star--black-holes (NSBHs) combining a binary black-hole baseline waveform (available in the effective-one-body approach) with a phenomenological description of tidal effects (extracted from numerical-relativity simulations), and correcting the amplitude during the late inspiral, merger and ringdown to account for the NS's tidal disruption. In particular, we calibrate the amplitude corrections using NSBH waveforms obtained with the numerical-relativity spectral Einstein code (SpEC) and the SACRA code. Based on the simulations used, and on checking that sensible waveforms are produced, we recommend our model to be employed with NS's mass in the range , tidal deformability 0\mbox{-}5000, and (dimensionless) BH's spin magnitude up to . We also validate our model against two new, highly accurate NSBH waveforms with BH's spin 0.9 and mass ratios 3 and 4, characterized by tidal disruption, produced with SpEC, and find very good agreement. Furthermore, we compute the unfaithfulness between waveforms from NSBH, BBH, and BNS systems, finding that it will be challenging for the advanced LIGO-Virgo--detector network at design sensitivity to distinguish different source classes. We perform a Bayesian parameter-estimation analysis on a synthetic numerical-relativity signal in zero noise to study parameter biases. Finally, we reanalyze GW170817, with the hypothesis that it is a NSBH. We do not find evidence to distinguish the BNS and NSBH hypotheses, however the posterior for the mass ratio is shifted to less equal masses under the NSBH hypothesis
Data-driven expectations for electromagnetic counterpart searches based on LIGO/Virgo public alerts
Searches for electromagnetic counterparts of gravitational-wave signals have redoubled since the first detection in 2017 of a binary neutron star merger with a gamma-ray burst, optical/infrared kilonova, and panchromatic afterglow. Yet, one LIGO/Virgo observing run later, there has not yet been a second, secure identification of an electromagnetic counterpart. This is not surprising given that the localization uncertainties of events in LIGO and Virgo's third observing run, O3, were much larger than predicted. We explain this by showing that improvements in data analysis that now allow LIGO/Virgo to detect weaker and hence more poorly localized events have increased the overall number of detections, of which well-localized, gold-plated events make up a smaller proportion overall. We present simulations of the next two LIGO/Virgo/KAGRA observing runs, O4 and O5, that are grounded in the statistics of O3 public alerts. To illustrate the significant impact that the updated predictions can have, we study the follow-up strategy for the Zwicky Transient Facility. Realistic and timely forecasting of gravitational-wave localization accuracy is paramount given the large commitments of telescope time and the need to prioritize which events are followed up. We include a data release of our simulated localizations as a public proposal planning resource for astronomers
- âŠ