41 research outputs found
Recommended from our members
Comparing verbal autopsy cause of death findings as determined by physician coding and probabilistic modelling: a public health analysis of 54 000 deaths in Africa and Asia.
BACKGROUND: Coverage of civil registration and vital statistics varies globally, with most deaths in Africa and Asia remaining either unregistered or registered without cause of death. One important constraint has been a lack of fit-for-purpose tools for registering deaths and assigning causes in situations where no doctor is involved. Verbal autopsy (interviewing care-givers and witnesses to deaths and interpreting their information into causes of death) is the only available solution. Automated interpretation of verbal autopsy data into cause of death information is essential for rapid, consistent and affordable processing. METHODS: Verbal autopsy archives covering 54 182 deaths from five African and Asian countries were sourced on the basis of their geographical, epidemiological and methodological diversity, with existing physician-coded causes of death attributed. These data were unified into the WHO 2012 verbal autopsy standard format, and processed using the InterVA-4 model. Cause-specific mortality fractions from InterVA-4 and physician codes were calculated for each of 60 WHO 2012 cause categories, by age group, sex and source. Results from the two approaches were assessed for concordance and ratios of fractions by cause category. As an alternative metric, the Wilcoxon matched-pairs signed ranks test with two one-sided tests for stochastic equivalence was used. FINDINGS: The overall concordance correlation coefficient between InterVA-4 and physician codes was 0.83 (95% CI 0.75 to 0.91) and this increased to 0.97 (95% CI 0.96 to 0.99) when HIV/AIDS and pulmonary TB deaths were combined into a single category. Over half (53%) of the cause category ratios between InterVA-4 and physician codes by source were not significantly different from unity at the 99% level, increasing to 62% by age group. Wilcoxon tests for stochastic equivalence also demonstrated equivalence. CONCLUSIONS: These findings show strong concordance between InterVA-4 and physician-coded findings over this large and diverse data set. Although these analyses cannot prove that either approach constitutes absolute truth, there was high public health equivalence between the findings. Given the urgent need for adequate cause of death data from settings where deaths currently pass unregistered, and since the WHO 2012 verbal autopsy standard and InterVA-4 tools represent relatively simple, cheap and available methods for determining cause of death on a large scale, they should be used as current tools of choice to fill gaps in cause of death data
The effect of participatory women's groups on birth outcomes in Bangladesh: does coverage matter? Study protocol for a randomized controlled trial
Background: Progress on neonatal survival has been slow in most countries. While there is evidence on what works to reduce newborn mortality, there is limited knowledge on how to deliver interventions effectively when health systems are weak. Cluster randomized trials have shown strong reductions in neonatal mortality using community mobilisation with women's groups in rural Nepal and India. A similar trial in Bangladesh showed no impact. A main hypothesis is that this negative finding is due to the much lower coverage of women's groups in the intervention population in Bangladesh compared to India and Nepal. For evidence-based policy making it is important to examine if women's group coverage is a main determinant of their impact. The study aims to test the effect on newborn and maternal health outcomes of a participatory women's group intervention with a high population coverage of women's groups.Methods: A cluster randomised trial of a participatory women's group intervention will be conducted in 3 districts of rural Bangladesh. As we aim to study a women's group intervention with high population coverage, the same 9 intervention and 9 control unions will be used as in the 2005-2007 trial. These had been randomly allocated using the districts as strata. To increase coverage, 648 new groups were formed in addition to the 162 existing groups that were part of the previous trial. An open cohort of women who are permanent residents in the union in which their delivery or death was identified, is enrolled. Women and their newborns are included after birth, or, if a woman dies during pregnancy, after her death. Excluded are women who are temporary residents in the union in which their birth or death was identified. The primary outcome is neonatal mortality in the last 24 months of the study. A low cost surveillance system will be used to record all birth outcomes and deaths to women of reproductive age in the study population. Data on home care practices and health care use are collected through interviews
Scoping review of community health participatory research projects in Ghana
BACKGROUND: Community health participation is an essential tool in health research and management where community members, researchers and other relevant stakeholders contribute to the decision-making processes. Though community participation processes can be complex and challenging, evidence from previous studies have reported significant value of engaging with community in community health projects. OBJECTIVE: To identify the nature and extent of community involvement in community health participatory research (CHPR) projects in Ghana and draw lessons for participatory design of a new project on diabetes intervention in Accra called the Contextual Awareness Response and Evaluation (CARE) diabetes project. METHODS: A scoping review of relevant publications on CHPR projects in Ghana which had a participatory component was undertaken. PubMed, PsycINFO, African Journal Online, Health Source: Nursing/Academic Edition, Humanities International Complete and Google Scholar were searched for articles published between January 1950 and October 2021. Levac et al.'s (2010) methodological framework for scoping reviews was used to select, collate and characterise the data. RESULTS: Fifteen studies were included in this review of CHPR projects from multiple disciplines. Participants included community health workers, patients, caregivers, policymakers, community groups, service users and providers. Based on Pretty's participation typology, several themes were identified in relation to the involvement of participants in the identified studies. The highest levels of participation were found in two studies in the diagnosis, four in the development, five in the implementation and three in the evaluation phases of projects. Community participation across all studies was assessed as low overall. CONCLUSION: This review showed that community participation is essential in the acceptability and feasibility of research projects in Ghana and highlighted community participation's role in the diagnosis, development, implementation and evaluation stages of projects. Lessons from this review will be considered in the development, implementation, and future evaluation of the CARE diabetes project
The effect of community groups and mobile phone messages on the prevention and control of diabetes in rural Bangladesh : study protocol for a three-arm cluster randomised controlled trial
BACKGROUND: Increasing rates of type 2 diabetes mellitus place a substantial burden on health care services, communities, families and individuals living with the disease or at risk of developing it. Estimates of the combined prevalence of intermediate hyperglycaemia and diabetes in Bangladesh vary, and can be as high as 30% of the adult population. Despite such high prevalence, awareness and control of diabetes and its risk factors are limited. Prevention and control of diabetes and its complications demand increased awareness and action of individuals and communities, with positive influences on behaviours and lifestyle choices. In this study, we will test the effect of two different interventions on diabetes occurrence and its risk factors in rural Bangladesh. METHODS/DESIGN: A three-arm cluster randomised controlled trial of mobile health (mHealth) and participatory community group interventions will be conducted in four rural upazillas in Faridpur District, Bangladesh. Ninety-six clusters (villages) will be randomised to receive either the mHealth intervention or the participatory community group intervention, or be assigned to the control arm. In the mHealth arm, enrolled individuals will receive twice-weekly voice messages sent to their mobile phone about prevention and control of diabetes. In the participatory community group arm, facilitators will initiate a series of monthly group meetings for men and women, progressing through a Participatory Learning and Action cycle whereby group members and communities identify, prioritise and tackle problems associated with diabetes and the risk of developing diabetes. Both interventions will run for 18 months. The primary outcomes of the combined prevalence of intermediate hyperglycaemia and diabetes and the cumulative 2-year incidence of diabetes among individuals identified as having intermediate hyperglycaemia at baseline will be evaluated through baseline and endline sample surveys of permanent residents aged 30 years or older in each of the study clusters. Data on blood glucose level, blood pressure, body mass index and hip-to-waist ratio will be gathered through physical measurements by trained fieldworkers. Demographic and socioeconomic data, as well as data on knowledge of diabetes, chronic disease risk factor prevalence and quality of life, will be gathered through interviews with sampled respondents. DISCUSSION: This study will increase our understanding of diabetes and other non-communicable disease burdens and risk factors in rural Bangladesh. By documenting and evaluating the delivery, impact and cost-effectiveness of participatory community groups and mobile phone voice messaging, study findings will provide evidence on how population-level strategies of community mobilisation and mHealth can be implemented to prevent and control noncommunicable diseases and risk factors in this population. TRIAL REGISTRATION: ISRCTN41083256 . Registered on 30 Mar 2016 (Retrospectively Registered). TRIAL ACRONYM: D-Magic: Diabetes Mellitus - Action through Groups or mobile Information for better Control
General and abdominal adiposity and hypertension in eight world regions: a pooled analysis of 837 population-based studies with 7•5 million participants
Background: Adiposity can be measured using BMI (which is based on weight and height) as well as indices of abdominal adiposity. We examined the association between BMI and waist-to-height ratio (WHtR) within and across populations of different world regions and quantified how well these two metrics discriminate between people with and without hypertension. Methods: We used data from studies carried out from 1990 to 2023 on BMI, WHtR and hypertension in people aged 20–64 years in representative samples of the general population in eight world regions. We graphically compared the regional distributions of BMI and WHtR, and calculated Pearson's correlation coefficients between BMI and WHtR within each region. We used mixed-effects linear regression to estimate the extent to which WHtR varies across regions at the same BMI. We graphically examined the prevalence of hypertension and the distribution of people who have hypertension both in relation to BMI and WHtR, and we assessed how closely BMI and WHtR discriminate between participants with and without hypertension using C-statistic and net reclassification improvement (NRI). Findings: The correlation between BMI and WHtR ranged from 0·76 to 0·89 within different regions. After adjusting for age and BMI, mean WHtR was highest in south Asia for both sexes, followed by Latin America and the Caribbean and the region of central Asia, Middle East and north Africa. Mean WHtR was lowest in central and eastern Europe for both sexes, in the high-income western region for women, and in Oceania for men. Conversely, to achieve an equivalent WHtR, the BMI of the population of south Asia would need to be, on average, 2·79 kg/m2 (95% CI 2·31–3·28) lower for women and 1·28 kg/m2 (1·02–1·54) lower for men than in the high-income western region. In every region, hypertension prevalence increased with both BMI and WHtR. Models with either of these two adiposity metrics had virtually identical C-statistics and NRIs for every region and sex, with C-statistics ranging from 0·72 to 0·81 and NRIs ranging from 0·34 to 0·57 in different region and sex combinations. When both BMI and WHtR were used, performance improved only slightly compared with using either adiposity measure alone. Interpretation: BMI can distinguish young and middle-aged adults with higher versus lower amounts of abdominal adiposity with moderate-to-high accuracy, and both BMI and WHtR distinguish people with or without hypertension. However, at the same BMI level, people in south Asia, Latin America and the Caribbean, and the region of central Asia, Middle East and north Africa, have higher WHtR than in the other regions. Funding: UK Medical Research Council and UK Research and Innovation (Innovate UK)
Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants
Background: Diabetes can be detected at the primary health-care level, and effective treatments lower the risk of complications. There are insufficient data on the coverage of treatment for diabetes and how it has changed. We estimated trends from 1990 to 2022 in diabetes prevalence and treatment for 200 countries and territories. Methods: We used data from 1108 population-representative studies with 141 million participants aged 18 years and older with measurements of fasting glucose and glycated haemoglobin (HbA1c), and information on diabetes treatment. We defined diabetes as having a fasting plasma glucose (FPG) of 7·0 mmol/L or higher, having an HbA1c of 6·5% or higher, or taking medication for diabetes. We defined diabetes treatment as the proportion of people with diabetes who were taking medication for diabetes. We analysed the data in a Bayesian hierarchical meta-regression model to estimate diabetes prevalence and treatment. Findings: In 2022, an estimated 828 million (95% credible interval [CrI] 757–908) adults (those aged 18 years and older) had diabetes, an increase of 630 million (554–713) from 1990. From 1990 to 2022, the age-standardised prevalence of diabetes increased in 131 countries for women and in 155 countries for men with a posterior probability of more than 0·80. The largest increases were in low-income and middle-income countries in southeast Asia (eg, Malaysia), south Asia (eg, Pakistan), the Middle East and north Africa (eg, Egypt), and Latin America and the Caribbean (eg, Jamaica, Trinidad and Tobago, and Costa Rica). Age-standardised prevalence neither increased nor decreased with a posterior probability of more than 0·80 in some countries in western and central Europe, sub-Saharan Africa, east Asia and the Pacific, Canada, and some Pacific island nations where prevalence was already high in 1990; it decreased with a posterior probability of more than 0·80 in women in Japan, Spain, and France, and in men in Nauru. The lowest prevalence in the world in 2022 was in western Europe and east Africa for both sexes, and in Japan and Canada for women, and the highest prevalence in the world in 2022 was in countries in Polynesia and Micronesia, some countries in the Caribbean and the Middle East and north Africa, as well as Pakistan and Malaysia. In 2022, 445 million (95% CrI 401–496) adults aged 30 years or older with diabetes did not receive treatment (59% of adults aged 30 years or older with diabetes), 3·5 times the number in 1990. From 1990 to 2022, diabetes treatment coverage increased in 118 countries for women and 98 countries for men with a posterior probability of more than 0·80. The largest improvement in treatment coverage was in some countries from central and western Europe and Latin America (Mexico, Colombia, Chile, and Costa Rica), Canada, South Korea, Russia, Seychelles, and Jordan. There was no increase in treatment coverage in most countries in sub-Saharan Africa; the Caribbean; Pacific island nations; and south, southeast, and central Asia. In 2022, age-standardised treatment coverage was lowest in countries in sub-Saharan Africa and south Asia, and treatment coverage was less than 10% in some African countries. Treatment coverage was 55% or higher in South Korea, many high-income western countries, and some countries in central and eastern Europe (eg, Poland, Czechia, and Russia), Latin America (eg, Costa Rica, Chile, and Mexico), and the Middle East and north Africa (eg, Jordan, Qatar, and Kuwait). Interpretation: In most countries, especially in low-income and middle-income countries, diabetes treatment has not increased at all or has not increased sufficiently in comparison with the rise in prevalence. The burden of diabetes and untreated diabetes is increasingly borne by low-income and middle-income countries. The expansion of health insurance and primary health care should be accompanied with diabetes programmes that realign and resource health services to enhance the early detection and effective treatment of diabetes. Funding: UK Medical Research Council, UK Research and Innovation (Research England), and US Centers for Disease Control and Prevention
Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c
Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults
Background:
Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories.
//
Methods:
We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI 2 SD above the median).
//
Findings:
From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness.
//
Interpretation:
The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesity.
//
Funding:
UK Medical Research Council, UK Research and Innovation (Research England), UK Research and Innovation (Innovate UK), and European Union
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults
Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We
estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from
1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories.
Methods We used data from 3663 population-based studies with 222 million participants that measured height and
weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate
trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children
and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the
individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference)
and obesity (BMI >2 SD above the median).
Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in
11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed
changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and
140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of
underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and
countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior
probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse
was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of
thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a
posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%)
with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and
obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for
both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such
as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged
children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls
in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and
42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents,
the increases in double burden were driven by increases in obesity, and decreases in double burden by declining
underweight or thinness.
Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an
increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy
nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of
underweight while curbing and reversing the increase in obesit
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)
