190 research outputs found

    Wireless neural/EMG telemetry system for freely moving insects

    Get PDF
    Journal ArticleWe have developed a miniature telemetry system that captures neural, EMG, and acceleration signals from a freely moving insect and transmits the data wirelessly to a remote digital receiver. The system is based on a custom low-power integrated circuit that amplifies and digitizes four biopotential signals as well as three acceleration signals from an off-chip MEMS accelerometer, and transmits this information over a wireless 920-MHz telemetry link. The unit weighs 0.79 g and runs for two hours on two small batteries. We have used this system to monitor neural and EMG signals in jumping and flying locusts

    Thermal Performance Study of a Prototype Multiport Heat Exchanger

    Get PDF
    Great efforts have been made to investigate the thermal performance and fluid flow behaviour in Minichannel Heat Exchangers (MICHX), however, the examination of air side in a multiport serpentine slab heat exchanger is rare. In the current investigation, experiments were conducted on air heating via a prototype multiport MICHX. Hot DI-water at different mass flow rates and a constant inlet temperature of 70░C was passed through the channels. The water side Reynolds numbers were varied from 255 to 411. The airside Reynolds numbers were calculated based on the free mean stream velocity and varied from 1750 to 5250, while, the air inlet temperatures were in the range of 22.5░C to 34.5░C. The effects of dimensional parameters, such as Reynolds number, Nusselt number, Prandtl number, Brinkman number, and Dean number on the heat transfer performance were investigated. The effect of the serpentine on the enhancement of DI water thermal performance behaviour was studied. Heat transfer correlations were established and compared to the results in the open literature

    Reactive direction control for a mobile robot: A locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated

    Get PDF
    Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to the image of an approaching object. These neurons are called the lobula giant movement detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the development of an LGMD model for use as an artificial collision detector in robotic applications. To date, robots have been equipped with only a single, central artificial LGMD sensor, and this triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly, for a robot to behave autonomously, it must react differently to stimuli approaching from different directions. In this study, we implement a bilateral pair of LGMD models in Khepera robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD models using methodologies inspired by research on escape direction control in cockroaches. Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration, the khepera robots could escape an approaching threat in real time and with a similar distribution of escape directions as real locusts. We also found that by optimising these algorithms, we could use them to integrate the left and right DCMD responses of real jumping locusts offline and reproduce the actual escape directions that the locusts took in a particular trial. Our results significantly advance the development of an artificial collision detection and evasion system based on the locust LGMD by allowing it reactive control over robot behaviour. The success of this approach may also indicate some important areas to be pursued in future biological research

    Responses of Drosophila giant descending neurons to visual and mechanical stimuli

    Get PDF
    In Drosophila, the paired giant descending neurons (GDNs), also known as giant fibers, and the paired giant antennal mechanosensory descending neurons (GAMDNs), are supplied by visual and mechanosensory inputs. Both neurons have the largest cell bodies in the brain and both supply slender axons to the neck connective. The GDN axon thereafter widens to become the largest axon in the thoracic ganglia, supplying information to leg extensor and wing depressor muscles. The GAMDN axon remains slender, interacting with other descending neuron axons medially. GDN and GAMDN dendrites are partitioned to receive inputs from antennal mechanosensory afferents and inputs from the optic lobes. Although GDN anatomy has been well studied in Musca domestica, less is known about the Drosophila homolog, including electrophysiological responses to sensory stimuli. Here we provide detailed anatomical comparisons of the GDN and the GAMDN, characterizing their sensory inputs. The GDN showed responses to light-on and light-off stimuli, expanding stimuli that result in luminance decrease, mechanical stimulation of the antennae, and combined mechanical and visual stimulation. We show that ensembles of lobula columnar neurons (type Col A) and mechanosensory antennal afferents are likely responsible for these responses. The reluctance of the GDN to spike in response to stimulation confirms observations of the Musca GDN. That this reluctance may be a unique property of the GDN is suggested by comparisons with the GAMDN, in which action potentials are readily elicited by mechanical and visual stimuli. The results are discussed in the context of descending pathways involved in multimodal integration and escape responses

    A fast and flexible panoramic virtual reality system for behavioural and electrophysiological experiments

    Get PDF
    Ideally, neuronal functions would be studied by performing experiments with unconstrained animals whilst they behave in their natural environment. Although this is not feasible currently for most animal models, one can mimic the natural environment in the laboratory by using a virtual reality (VR) environment. Here we present a novel VR system based upon a spherical projection of computer generated images using a modified commercial data projector with an add-on fish-eye lens. This system provides equidistant visual stimulation with extensive coverage of the visual field, high spatio-temporal resolution and flexible stimulus generation using a standard computer. It also includes a track-ball system for closed-loop behavioural experiments with walking animals. We present a detailed description of the system and characterize it thoroughly. Finally, we demonstrate the VR system’s performance whilst operating in closed-loop conditions by showing the movement trajectories of the cockroaches during exploratory behaviour in a VR forest

    Non-linear neuronal responses as an emergent property of afferent networks:a case study of the locust lobula giant movement detector

    Get PDF
    In principle it appears advantageous for single neurons to perform non-linear operations. Indeed it has been reported that some neurons show signatures of such operations in their electrophysiological response. A particular case in point is the Lobula Giant Movement Detector (LGMD) neuron of the locust, which is reported to locally perform a functional multiplication. Given the wide ramifications of this suggestion with respect to our understanding of neuronal computations, it is essential that this interpretation of the LGMD as a local multiplication unit is thoroughly tested. Here we evaluate an alternative model that tests the hypothesis that the non-linear responses of the LGMD neuron emerge from the interactions of many neurons in the opto-motor processing structure of the locust. We show, by exposing our model to standard LGMD stimulation protocols, that the properties of the LGMD that were seen as a hallmark of local non-linear operations can be explained as emerging from the dynamics of the pre-synaptic network. Moreover, we demonstrate that these properties strongly depend on the details of the synaptic projections from the medulla to the LGMD. From these observations we deduce a number of testable predictions. To assess the real-time properties of our model we applied it to a high-speed robot. These robot results show that our model of the locust opto-motor system is able to reliably stabilize the movement trajectory of the robot and can robustly support collision avoidance. In addition, these behavioural experiments suggest that the emergent non-linear responses of the LGMD neuron enhance the system's collision detection acuity. We show how all reported properties of this neuron are consistently reproduced by this alternative model, and how they emerge from the overall opto-motor processing structure of the locust. Hence, our results propose an alternative view on neuronal computation that emphasizes the network properties as opposed to the local transformations that can be performed by single neurons

    An Alternative Theoretical Approach to Escape Decision-Making: The Role of Visual Cues

    Get PDF
    Escape enables prey to avoid an approaching predator. The escape decision-making process has traditionally been interpreted using theoretical models that consider ultimate explanations based on the cost/benefit paradigm. Ultimate approaches, however, suffer from inseparable extra-assumptions due to an inability to accurately parameterize the model's variables and their interactive relationships. In this study, we propose a mathematical model that uses intensity of predator-mediated visual stimuli as a basic cue for the escape response. We consider looming stimuli (i.e. expanding retinal image of the moving predator) as a cue to flight initiation distance (FID; distance at which escape begins) of incubating Mallards (Anas platyrhynchos). We then examine the relationship between FID, vegetation cover and directness of predator trajectory, and fit the resultant model to experimental data. As predicted by the model, vegetation concealment and directness of predator trajectory interact, with FID decreasing with increased concealment during a direct approach toward prey, but not during a tangential approach. Thus, we show that a simple proximate expectation, which involves only visual processing of a moving predator, may explain interactive effects of environmental and predator-induced variables on an escape response. We assume that our proximate approach, which offers a plausible and parsimonious explanation for variation in FID, may serve as an evolutionary background for traditional, ultimate explanations and should be incorporated into interpretation of escape behavior
    corecore