297 research outputs found

    Artificial Neural Networks for Solving Ordinary and Partial Differential Equations

    Full text link
    We present a method to solve initial and boundary value problems using artificial neural networks. A trial solution of the differential equation is written as a sum of two parts. The first part satisfies the boundary (or initial) conditions and contains no adjustable parameters. The second part is constructed so as not to affect the boundary conditions. This part involves a feedforward neural network, containing adjustable parameters (the weights). Hence by construction the boundary conditions are satisfied and the network is trained to satisfy the differential equation. The applicability of this approach ranges from single ODE's, to systems of coupled ODE's and also to PDE's. In this article we illustrate the method by solving a variety of model problems and present comparisons with finite elements for several cases of partial differential equations.Comment: LAtex file, 26 pages, 21 figs, submitted to IEEE TN

    3-D Registration on Carotid Artery imaging data: MRI for different timesteps

    Full text link
    A common problem which is faced by the researchers when dealing with arterial carotid imaging data is the registration of the geometrical structures between different imaging modalities or different timesteps. The use of the "Patient Position" DICOM field is not adequate to achieve accurate results due to the fact that the carotid artery is a relatively small structure and even imperceptible changes in patient position and/or direction make it difficult. While there is a wide range of simple/advanced registration techniques in the literature, there is a considerable number of studies which address the geometrical structure of the carotid artery without using any registration technique. On the other hand the existence of various registration techniques prohibits an objective comparison of the results using different registration techniques. In this paper we present a method for estimating the statistical significance that the choice of the registration technique has on the carotid geometry. One-Way Analysis of Variance(ANOVA) showed that the p-values were <0.0001 for the distances of the lumen from the centerline for both right and left carotids of the patient case that was studied.Comment: 4 pages, 4 figures, 1 table, preprint submitted to IEEE-EMBC 201

    Automatic Seizure Detection Based on Time-Frequency Analysis and Artificial Neural Networks

    Get PDF
    The recording of seizures is of primary interest in the evaluation of epileptic patients. Seizure is the phenomenon of rhythmicity discharge from either a local area or the whole brain and the individual behavior usually lasts from seconds to minutes. Since seizures, in general, occur infrequently and unpredictably, automatic detection of seizures during long-term electroencephalograph (EEG) recordings is highly recommended. As EEG signals are nonstationary, the conventional methods of frequency analysis are not successful for diagnostic purposes. This paper presents a method of analysis of EEG signals, which is based on time-frequency analysis. Initially, selected segments of the EEG signals are analyzed using time-frequency methods and several features are extracted for each segment, representing the energy distribution in the time-frequency plane. Then, those features are used as an input in an artificial neural network (ANN), which provides the final classification of the EEG segments concerning the existence of seizures or not. We used a publicly available dataset in order to evaluate our method and the evaluation results are very promising indicating overall accuracy from 97.72% to 100%

    ARTreat Project: Three-Dimensional Numerical Simulation of Plaque Formation and Development in the Arteries

    Get PDF
    Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous elements in arteries. It is characterized by dysfunction of endothelium and vasculitis, and accumulation of lipid, cholesterol, and cell elements inside blood vessel wall. In this study, a continuum-based approach for plaque formation and development in 3-D is presented. The blood flow is simulated by the 3-D Navier-Stokes equations, together with the continuity equation while low-density lipoprotein (LDL) transport in lumen of the vessel is coupled with Kedem-Katchalsky equations. The inflammatory process was solved using three additional reaction-diffusion partial differential equations. Transport of labeled LDL was fitted with our experiment on the rabbit animal model. Matching with histological data for LDL localization was achieved. Also, 3-D model of the straight artery with initial mild constriction of 30% plaque for formation and development is presented

    Analysis of the sentiments of the participants in a clinical study to evaluate a balance rehabilitation intervention delivered by a Virtual Coach

    Get PDF
    Multiple studies for balance rehabilitation interventions have been accomplished aiming to demonstrate that sensory interventions and cognitive functionality are crucial for postural control and improvement of the quality of patient's daily life. However, none of the existing studies is filling the lack of expert physiotherapists availability. A pilot randomized study was conducted to assess the acceptability of the HOLOBalance telerehabilitation system. HOLOBalance is an interactive AR rehabilitation system which encompasses multi-sensory training program to enhance balance and cognitive coaching, for older adults at falls risk. In this work, we present a sentiment analysis of the patients participating in this study using the VADER methodology to evaluate and quantify their attitude towards the HOLOBalance system. Our results highlight the importance of findings positive polarity towards the AR interaction, which is based on the use of a holographic virtual physiotherapist. The compound score of 0.185 indicates the valuable positive feedback gained from the user experience

    Diagnostic accuracy and usability of the EMBalance decision support system for vestibular disorders in primary care: proof of concept randomised controlled study results

    Get PDF
    BACKGROUND: Dizziness and imbalance are common symptoms that are often inadequately diagnosed or managed, due to a lack of dedicated specialists. Decision Support Systems (DSS) may support first-line physicians to diagnose and manage these patients based on personalised data. AIM: To examine the diagnostic accuracy and application of the EMBalance DSS for diagnosis and management of common vestibular disorders in primary care. METHODS: Patients with persistent dizziness were recruited from primary care in Germany, Greece, Belgium and the UK and randomised to primary care clinicians assessing the patients with (+ DSS) versus assessment without (- DSS) the EMBalance DSS. Subsequently, specialists in neuro-otology/audiovestibular medicine performed clinical evaluation of each patient in a blinded way to provide the "gold standard" against which the + DSS, - DSS and the DSS as a standalone tool (i.e. without the final decision made by the clinician) were validated. RESULTS: One hundred ninety-four participants (age range 25-85, mean = 57.7, SD = 16.7 years) were assigned to the + DSS (N = 100) and to the - DSS group (N = 94). The diagnosis suggested by the + DSS primary care physician agreed with the expert diagnosis in 54%, compared to 41.5% of cases in the - DSS group (odds ratio 1.35). Similar positive trends were observed for management and further referral in the + DSS vs. the - DSS group. The standalone DSS had better diagnostic and management accuracy than the + DSS group. CONCLUSION: There were trends for improved vestibular diagnosis and management when using the EMBalance DSS. The tool requires further development to improve its diagnostic accuracy, but holds promise for timely and effective diagnosis and management of dizzy patients in primary care. TRIAL REGISTRATION NUMBER: NCT02704819 (clinicaltrials.gov)
    corecore