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Abstract— Recovery software system operations from a state 

of extensive damage without human intervention is a 

challenging problem as it may need to be based on a different 

infrastructure from the one that the system was originally 

designed for and deployed on (i.e., computational and 

communication devices) and significant reorganization of 

system functionalities. In this paper, we introduce a bio-

inspired approach for reconstructing nearly extinct complex 

software systems. Our approach is based on encoding a 

computational DNA (co-DNA) of a system and computational 

analogues of biological processes to enable the transmission of 

co-DNA over computational devices and, through it, the 

transformation of these devices into system cells that can realise 

chunks of the system functionality, and spread further its 

reconstruction process. 

I. INTRODUCTION 

omplex software systems can suffer from massive 

failures, due to environmental factors (e.g., massive loss 

of computational or communication infrastructures, 

dramatically increased conditions of use due to some social 

or physical emergency, security attacks) or internal factors 

(e.g., faults in key system components). Such factors can 

bring software systems to a near extinction state, i.e., a state 

where a large number of system components become non-

operational or physically destroyed, including components 

with key local or global control responsibilities. In such 

circumstances, the survived components of the system may 

also have to operate under an increasingly adverse and 

continually changing environment (e.g., in cases where 

damage has been caused by on-going external disaster). 

Recovering system operations from a near extinction state 

is a challenging open problem as it may require excessive 

system reconstruction using a physical infrastructure (i.e., 

computational and communication devices) that is different 

from the one that the system was originally designed for and 

operated on. Besides this, the system may also need to 

redirect its focus from a normal and fully functional 
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operating mode to a basic survival operation mode. As a 

consequence, the software functionality may have to be re-

modularised and re-allocated onto computational and 

communication devices with very different characteristics 

than the ones that were used originally. A further 

complication is that a near extinction state might continue to 

deteriorate, in an unpredictable manner, to full extinction 

whilst the system itself is trying to recover. 

Scenarios of extensive system damage and reconstruction 

arise often in crisis management, when significant parts of 

the ICT infrastructure and the software systems running on it 

(e.g., communication system for emergency responders) may 

be lost following some natural or other disaster. In such 

cases, reinstating the damaged system might not be possible 

through centralized servers and the original communication 

infrastructure (e.g., WiFi), and require reconstruction from 

any survived system components (e.g., survived devices of 

emergency responders) and use of alternative 

communication means (e.g., ad-hoc heterogeneous 

networks). 

Current state of the art techniques on software system 

dependability, resilience and recovery address some aspects 

of this problem (e.g., forecasting dependability levels [1], 

increasing system resilience through redundancy [2], and 

development of autonomic self-healing system capabilities 

[3,4]). They cannot, however, support system reconstruction 

from a near extinction state. 

Software system re-construction from a “near extinct” 

state is an activity that needs to be undertaken by the 

survived components of the near extinct system in an 

autonomic manner, i.e., in a self-triggered and self-managing 

mode without assuming or depending on any form of human 

intervention. Providing a solution to this problem is more 

challenging than repairing a system following the detection 

of faults. This is because it must deal with the extensive loss 

of key system components and services, the computational 

infrastructure where the system is deployed, and possibly 

key system administration actors and functions. And whilst 

autonomic system behaviour is necessary in such 

circumstances, it is not sufficient on its own for 

reconstructing the system.  

Since approaches, which are based solely on software and 

systems engineering methods, have failed to support 

excessive system reconstruction, to achieve a breakthrough 

we need to undertake a different and inter-disciplinary 

approach. Biological organisms have effective DNA-driven 

reconstruction and recovery mechanisms [5-7]. Inspired by 

this observation, our approach is to develop a solution for 
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extensive system reconstruction based on mechanisms 

operating using similar principles and processes. 

A key element of our approach is the concept of the 

computational DNA of a software system (referred to as “co-

DNA” in the rest of this paper). co-DNA models and 

encapsulates the basic functional units of a complex 

software system that are required in order to fully 

reconstruct it, properties of these units that need to be taken 

into account in system reconstruction and re-organization, 

and possible ways of re-combining the units into alternative 

structures. Inspired by the biological analogue that any 

individual cell in a multi-cellular organism has the same 

information encoded in its DNA regardless of its committed 

differentiated path, the co-DNA is physically present in all 

the functional units of the original system enabling them to 

function as system cells. Then, as in biological organisms, 

the function of each of these system cells will be determined 

by the unlocked part of the co-DNA that exists in it. 

When a system gets in a near extinction state, its co-DNA 

can be transmitted across external computational and 

communication devices that are identified by the survived 

components of the system, in order to recruit and make them 

function as system cells as part of the system reconstruction 

process. Co-DNA transmission and activation is performed 

by computational processes analogous to biological 

processes of transmitting DNA and enabling the functioning 

of cells of biological organisms with proven effectiveness 

for such organisms. Two types of responses of biological 

cells are of particular relevance: tissue repair and tissue 

regeneration [8-13]. Tissue repair refers to the physiologic 

adaptation of an organ after injury in an effort to re-establish 

continuity, and involves recruitment of cell types, different 

from the original ones, in an effort to establish tissue 

continuity, without resulting in the exact replacement of 

lost/damaged tissue. Tissue regeneration refers to the 

replacement of lost/damaged tissue with an exact copy, such 

that both morphology and functionality are completely 

restored. Both these responses are driven and enabled by the 

DNAs of the relevant organisms. They are also realised 

locally without any form of centralised control. The latter 

characteristic of biological repair processes is particularly 

relevant in the case of system reconstruction from a near 

extinct state, as in such cases both the components that 

undertake the key control functions of the original system 

and critical communication lines between system 

components might have been lost.  

As shown in part (a) of Fig. 1, for example, a software 

system may involve several devices of different 

computational capabilities (e.g., servers, laptops, tablets, and 

smart phones). Each of these devices will incorporate the co-

DNA of the system with a certain set of genes in it unlocked, 

as required for the realisation of the functional role of the 

device in the system. Furthermore, the role of the device 

(system cell) can be dynamically activated and transformed 

by altering the configuration of the locked and unlocked 

genes of the co-DNA of the system that is stored in it 

dynamically.  

The role of co-DNA is also fundamental in the system 

reconstruction process. System cells that have not been 

destroyed in a near extinction state can transmit the co-DNA 

of the system to any computational and communication 

devices that they can identify, as shown in parts (b1) and 

(b2) of Fig. 1, respectively. Subsequently, if the co-DNA is 

accepted by the destination device, it can unlock some of its 

genes in order to make the device assume specific operations 

as part of the software system that the co-DNA encodes. The 

unlocking of genes in the co-DNA that has arrived on a new 

device can also make it transmit itself to other devices, as 

shown in part (b3) of Fig. 1. 

The genes that will be unlocked in the co-DNA that 

arrives on a device are determined by a special regulatory 

gene that is always unlocked. This gene encodes the core 

bootstrapping operations for unlocking other genes. It also 

incorporates primitive capabilities for detecting the 

resources and computational capabilities of the device in 

order to make unlocking decisions.  As in biological 

organisms, this process can enable the reconstruction of a 

near extinct system through the use of different 

computational resources, as shown in part (c) of Fig. 1. 

 

Fig. 1. co-DNA enabled software systems and system reconstruction 

II. CO-DNA MODELLING 

DNA is a complex molecule that contains the genetic 

information for the development and function of almost all 

living organisms, organised in genes. Each gene contains the 

information required for the production of a protein. Other 

DNA segments have structural purposes or are involved in 

the regulation of gene expression. Regardless of their 

function, however, all cells have the same information in 

their DNA and what differentiates their type (e.g., muscle 

cell, heart cell) is the specific set of genes that are unlocked 

in them (the rest of the genome is present but ‘locked’).  

In an analogous manner, the co-DNA of a software 

system is a library of computational genes, each encoding a 

functional unit of the system with descriptions of different 

key characteristics of the unit and the code that implements 



 

 

 

it. The co-DNA includes also computational genes that can 

realise the process of system reconstruction when this 

becomes necessary. The genes of co-DNA can be locked or 

unlocked dynamically. Unlocked genes become active 

functional system components. Locked genes are inactive 

components.  

The existence of the co-DNA of a software system on a 

computational or communication device can make this 

device function as part of the system, i.e., to become a 

system cell. This will happen when at least one of the genes 

of the co-DNA on the device is unlocked. The exact part of 

system functionality that is assumed by a device depends on 

the genes of the system co-DNA that are unlocked whilst the 

co-DNA is within the device. 

The software system units that are encoded in the co-DNA 

correspond to system components at some level in the 

overall software system architecture. These components may 

be atomic or composite. Their characterisation as “units” 

from the perspective of co-DNA modeling reflects the view 

that, even if they could be decomposed further into more 

primitive components, the co-DNA model does not encode 

this possibility and these components will have to be 

activated and used as composite elements when the gene in 

the co-DNA, which corresponds to them, is unlocked on a 

computational device. The description of software system 

units in co-DNA genes is multi-faceted and includes 

specifications of: 

1) the initial architectural model of the system and the role 

of the particular unit within it 

2) alternative patterns of re-assembling the unit with other 

units in reconstructing the system (depending on 

constraints arising during the reconstruction process, as 

shown in parts (a) and (c) of Fig. 1)   

3) provided and required interfaces of the unit and the 

communication protocols through which it may interact 

with other units (whether they are part of the same co-

DNA or other co-DNAs that may be recombined with the 

gene dynamically (see process P7 below) 

4) quality and security properties that the unit requires and 

can guarantee whilst interacting with other units 

5) the information that the unit could reveal about its 

internal state and the interface through which such 

information can be obtained by other system units in 

order to enable them identify a wider “system state” that 

may be necessary in deciding with which units to 

connect and how to alter their behaviour if necessary 

6) the code implementing the unit, and 

7) possible configurations of the code depending on the 

hosting device where the code should run. 

The above facets are necessary in order to support 

different operations in the system reconstruction process and 

realize the functionality of the system.  

In addition to genes encoding the functional units of the 

system, the co-DNA incorporates genes with a regulatory 

role in the system reconstruction process. The latter genes 

undertake responsibility for functions such as the initial 

unlocking (and the dynamic locking/unlocking) of other co-

DNA genes; transmitting the co-DNA to additional devices; 

obtaining and analysing information about the operational 

context of the co-DNA on a device and the state of the 

system components on the local device where they belong; 

and transmitting, receiving and acting on signals regarding 

the overall state of the software system in order to undertake 

appropriate component adaptation actions on the local 

device. A conceptual view of the overall co-DNA structure 

is shown in Fig. 2. 

 

 

Fig. 2.  Conceptual co-DNA structure. 

III. BIOLOGICALLY INSPIRED SOFTWARE SYSTEM 

RECONSTRUCTION PROCESSES 

Having described the basic modeling facets of co-DNA, 

we can now turn our attention to specific biological 

processes that can be simulated to enable system 

reconstruction:  

Tissue communication and awareness of injury (P1): 

In biological systems, following injury and loss of tissue, a 

variety of local events will signal the initiation of tissue 

response. An increase in the concentration of certain 

chemical signals (chemotactic agents) released from injured 

cells will signal the recruitment of certain type of cells to the 

area of injury that will assist in wound healing. At the same 

time, a fall in the extracellular concentration of certain 

chemical signals, continuously produced by the cells 

themselves, may trigger cell division (mitosis) of the 

remaining cell population. With tissue regeneration and the 

resultant increase in the number of cells, the concentration of 

the chemical signal, will again rise. This would signal the 

restoration of the original cell population and cell replication 

will stop. 

In software system reconstruction, each system cell is 

modeled to transmit a tracer signal to neighbouring nodes. 

The tracer signal is modeled as a random walk, and hence 

each node will receive an average number of ‘visits’ over 

time. The fall of this number below an expected threshold 

will signify loss of a critical mass of nodes and will trigger a 

response from the surviving nodes. The appropriate response 

for this scenario is the recruitment of new unassigned nodes 

for restoring system functionality. Depending on the 

architecture, there could also be local and global constraints 

to satisfy. co-DNA encodes such constraints instructing the 
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node, which receives them to act in a network building 

capacity until local constraints are satisfied and then 

continue monitoring this state. Depending on the schemes 

for dealing with this issue, there might be simultaneous 

competing reaction by different nodes or over-reaction. 

Thus, appropriate schemes for self-regulation are also 

needed, as part of the co-DNA encoding. 

Cell signaling & response (P2): Cell communication is 

realised through signals that are sent and received by cells or 

come from the environment. Once a signal reaches its target 

molecule (usually a protein), it works to change the 

behaviour of the cell. Each cell receives a complex 

combination of signals, which can simultaneously trigger 

many different signaling pathways. Each step in a signaling 

pathway provides an opportunity for communication 

between different cells. Through this communication, the 

cell integrates information from different signaling pathways 

to initiate an appropriate response.  

Similarly, co-DNAs can be transmitted across different 

computational devices through networks using appropriate 

protocols. These may be non-standard network overlay 

protocols. They could also imitate malware techniques in 

order to be used across different platforms. An overlay 

network layer protocol should support co-DNA receipt, 

dispatch, confirmation, encoding, decoding, and storage 

actions. When a device receives a signal containing a co-

DNA transmitted and activates it, the device establishes an 

application layer communication with other software cells of 

the same system. At that level an additional communication 

protocol is required to let the device act in an application 

compatible manner. The protocol of this communication 

must be determined by the co-DNA itself.  

In response to appropriate signals, a cell may survive, 

divide (cell replication), differentiate or die in a programmed 

way (apoptosis) (Fig. 3). Similarly the surviving system 

elements could ‘replicate’ themselves, leading to the 

creation of separate virtual machines running on the same 

computational device. The benefit of splitting a device into 

two or more separate virtual machines is that the resulting 

machines could behave in an independent way, assuming 

roles of different software system cells. Subsequently, they 

may also behave in different ways depending on the 

transformations of their individual co-DNAs after the initial 

split that led to their creation. 

Cellular differentiation is the process by which a less 

specialized cell becomes a more specialized cell type. 

Differentiation changes a cell's size, shape, metabolic 

activity, responsiveness to signals, and ultimately, 

functionality. These changes are largely due to highly 

controlled modifications in gene expression (epigenetics). 

With a few exceptions, cellular differentiation almost never 

involves a change in the DNA sequence itself. Thus, 

different cells can have very different physical 

characteristics despite having the same genome. Closely 

related to this process is metaplasia, a type of cellular 

adaptation to chronic injury. Metaplasia occurs when a 

differentiated cell of a certain type is replaced by another 

cell type, which may be less differentiated. Differentiation in 

software systems may be modeled by system cells acquiring 

new functions through dynamic unlocking of co-DNA 

functions triggered by signals that specific system cells get 

from their environment (e.g., low battery, memory resource 

exhaustion, changes to device configurations). 

In contrast to cell death following an external noxious 

effect, apoptosis is a programmed cell death process, 

designed for the normal elimination of unwanted cell 

populations. Regulation of apoptosis is mediated by a 

number of genes in DNA and their products. In system 

recovery, the recruited software system cells may be also 

modeled for programmed shutdown. This may be necessary 

when, in the absence of any centralised form of control in 

the reconstruction process, the system reaches a state of too 

many elements of a given type. This function can be 

triggered by “apoptosis” functions encoded in the co -DNA 

of a system cell or newly sent external co-DNAs.  

Tissue remodeling (P3): Healing is a complex and 

dynamic process of restoring cellular structures and tissue 

layers. As healing develops over time, the cellular and non-

cellular elements of the healed tissue change configuration 

to resemble the original tissue before injury. Similarly, as 

original system cells recover, the software system needs to 

have the ability to reconfigure itself according to its original 

architecture. 

 

Fig. 3. Cell responses to different signals (represented by A-D) 

DNA Replication (P4): DNA has the ability to replicate 

itself through complex gene regulated mechanisms, 

involving special proteins. The co-DNA should have the 

ability to replicate itself faultlessly through a novel protocol 

leading to the creation of exact copies that can be 

transmitted to different computational devices. co-DNAs 

should also encode mechanisms for identifying random 

faults during their replication and correct them.  

DNA Transformation and recombination (P5): 

Transformation is the naturally occurring process of gene 

transfer, which involves absorption of the genetic material 

by a cell through the fusion of a foreign DNA with the 

native DNA resulting in the genetic expression of the 

received DNA. If DNA material from the cell of an 

organism is incorporated into the DNA of a host cell of a 

different organism, then a recombinant or chimeric DNA is 

constructed. In another form of recombination, known as 

transpositional recombination, mobile elements 



 

 

 

(transposons) are inserted into a target DNA and can play a 

critical role in the spread of several factors. Recombinant 

DNA (rDNA) molecules can bring together genetic material 

from multiple sources, creating sequences that would not 

otherwise be found in biological organisms. rDNA is 

possible because DNA molecules from all organisms share 

the same chemical structure. 

The ability to incorporate the co-DNA of an external 

software system, through transfection, to a host device with 

a different original function is also important for system 

reconstruction (Fig. 4). The transfection of co-DNA may 

take different forms, e.g., forced transfection (when near 

extinction is reached in critical systems such as emergency 

response systems), near shut down transfection and denial of 

service. Transformation may need to be regulated to address 

security and operational constraints (e.g., to avoid over-

utilisation of the target cell or the transfection of malware). 

 

Fig. 4. Mechanisms of transformation. Exogenous DNA can be integrated to 

the host DNA molecule (recombinant DNA) or in special DNA types  

(plasmids) it can transform the cell (i.e. expression of plasmid genes) 

without integration of the DNA material into the host cell’s chromosome. 

Gene expression regulation (P6): The regulation of gene 

expression includes a wide range of mechanisms that are 

used by cells to increase or decrease the production of 

specific gene products (proteins). This increases the 

versatility and adaptability of an organism by allowing the 

cell to express protein when needed. Gene expression 

regulation is a multi-level process that generally requires 

suppressors and trigger factors. In our approach, near-

extinction events can be modeled to trigger or suppress code 

execution. Moreover, upon reaching a certain level of 

complexity, a different process permitting the individual to 

integrate the vast quantity of interactions with the outside 

world may also emerge. This process (aka epigenesist) is 

characterized by the possession of a basic structure that is 

entirely defined by the genome (the innate part) but can also 

be subjected to modification through lifetime interactions of 

the individual with the environment (the acquired part). 

As shown in Fig. 5, the DNA consists of: (i) dominant 

genes alleles offering the different ways of developing each 

cell and generating a phenotype, (ii) functional genes alleles 

offering the different ways of each organ function, and (iii) 

control genes alleles that constitute all the control processes 

and the control processes themselves.  All genes will be 

silent (not active) except defining and controlling genes. 

This structure inspires our envisaged conceptual structure of 

co-DNA discussed in Sect. II.  

 

Fig. 5. Gene regulation 

IV. RELATED WORK 

The development of biologically inspired solutions to 

computational problems has become a significant trend 

within the last couple of decades. Swarm Intelligence [14] 

and Social Insect principles [15] have been used to address 

problems of distributed search, optimization and routing in 

wireless sensor networks [16]. Firefly Synchronization [17] 

has been used to address robust and distributed clock 

synchronization [18]. Artificial immune [19] and activator-

inhibitor systems have inspired solutions to distributed 

coordination, network autonomicity and adaptability, and 

system misbehaviour/anomaly detection [20]. Also problems 

of content distribution, overlay network formulation, and 

coordination in massively distributed systems have been 

solved based on the bio-inspired principles of epidemic 

spreading [21] and cellular signaling (networks) [22]. In 

addition, DNA has been used to build basic computational 

units (e.g., logic gates), and DNA like structures have been 

used as a model of parallel computation in transactional 

systems [23]. Inspired by natural ecosystems, SAPERE has 

developed a framework for decentralized deployment and 

execution of self-aware and adaptive services for future 

pervasive network scenarios [24]. Related research includes 

also genetic algorithms [25], and genetic programming (GP) 

[26]. Genetic algorithms focus on evolving a population of 

candidate solutions to an optimization problem, towards a 

better solution. GP is used in genomics focusing on typical 

genetic analysis and gene network inference.  

Inspired by the autonomy of the human nervous system, 

autonomic computing (AC [27,28]) is also concerned with 

the development of self-managing capabilities (e.g., self-

configuration, self-optimization, self-protection, self-healing 

and self-protection) for software systems.  AC typically 

advocates a reference control model of monitoring, analysis, 

planning, execution and knowledge management capabilities 

(MAPE-K [29]) that can be introduced to a normal system to 

give it autonomic capabilities. MAPE-K has been realized in 

some frameworks (e.g., ABLE [30], KX [31], AC Toolkit 

[32]). AC research has also generated autonomic system 

specification and adaptation policy languages (e.g., ASSL 

[33,34]), and alternative implementations for MAPE-K 



 

 

 

capabilities (e.g., monitoring and context awareness [35], 

planning [36], knowledge [37] and process adaptation [38]). 

The commonality of our co-DNA based system 

reconstruction approach with the above strands of research is 

that it also aims to draw upon biological mechanisms with 

proven properties in order to develop a novel solution to a 

challenging computational problem that requires forms of 

autonomic behaviour. However, our focus and the 

challenges that our approach aims to address are entirely 

different from the above work, as we are targeting to address 

the re-construction of large-scale software systems starting 

from a state of excessive damage, operating with no 

capabilities of central control within a continually changing 

and possibly increasingly adverse environment (e.g., on-

going disaster/emergency).  

V. CONCLUSION 

In this paper, we have introduced a bio-inspired approach 

for reconstructing nearly extinct complex software systems. 

This approach is based on encoding the co-DNA of a system 

and computational analogues of biological processes 

enabling its transmission over computational devices and, 

through it, the transformation of the latter into system cells 

that can realise chunks of the system functionality, and 

spread further its reconstruction process. 

Having outlined the fundamental structure of co-DNA and 

the key biological processes that are plausible to utilize in 

the system reconstruction process, we are currently 

developing the computational framework that will realize 

our approach. This development is informed by two case 

studies. The first case study is a complex Crisis 

Management Software Ecosystem (CMSE) that reaches a 

near extinction state following a massive scale failure caused 

by a natural disaster.   The second case study is a 

telecommunication network, involving different layers, 

including radio access, the core network and/or the 

backhaul/backbone network. 
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