
Bibas, A., Spanoudakis, G., Bellos, C., Fotiadis, D. I. & Koutsouris, D. (2013). Biologically Inspired

Near Extinct System Reconstruction. In: 2013 IEEE 13th International Conference on

Bioinformatics and Bioengineering (BIBE). (p. 14026394). IEEE.

City Research Online

Original citation: Bibas, A., Spanoudakis, G., Bellos, C., Fotiadis, D. I. & Koutsouris, D. (2013).

Biologically Inspired Near Extinct System Reconstruction. In: 2013 IEEE 13th International

Conference on Bioinformatics and Bioengineering (BIBE). (p. 14026394). IEEE.

Permanent City Research Online URL: http://openaccess.city.ac.uk/5151/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/76980461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Abstract— Recovery software system operations from a state

of extensive damage without human intervention is a

challenging problem as it may need to be based on a different

infrastructure from the one that the system was originally

designed for and deployed on (i.e., computational and

communication devices) and significant reorganization of

system functionalities. In this paper, we introduce a bio-

inspired approach for reconstructing nearly extinct complex

software systems. Our approach is based on encoding a

computational DNA (co-DNA) of a system and computational

analogues of biological processes to enable the transmission of

co-DNA over computational devices and, through it, the

transformation of these devices into system cells that can realise

chunks of the system functionality, and spread further its

reconstruction process.

I. INTRODUCTION

omplex software systems can suffer from massive

failures, due to environmental factors (e.g., massive loss

of computational or communication infrastructures,

dramatically increased conditions of use due to some social

or physical emergency, security attacks) or internal factors

(e.g., faults in key system components). Such factors can

bring software systems to a near extinction state, i.e., a state

where a large number of system components become non-

operational or physically destroyed, including components

with key local or global control responsibilities. In such

circumstances, the survived components of the system may

also have to operate under an increasingly adverse and

continually changing environment (e.g., in cases where

damage has been caused by on-going external disaster).

Recovering system operations from a near extinction state

is a challenging open problem as it may require excessive

system reconstruction using a physical infrastructure (i.e.,

computational and communication devices) that is different

from the one that the system was originally designed for and

operated on. Besides this, the system may also need to

redirect its focus from a normal and fully functional

Manuscript received July 1, 2013.

A. Bibas, is with the 1
st
 Department of Otolaryngology – Head & Neck

Surgery, University of Athens, Greece. (e-mail: thanosbibas@hotmail.com).

G. Spanoudakis is with the City University London, Northampton

Square, London, EC1V 0HB, UK (corresponding author phone:

+442070408413; fax: +442070400244; e-mail: g.e.spanoudakis@

city.ac.uk).

C. Bellos and D. Koutsouris are with the Biomedical Engineering

Laboratory, Institute of Communications and Computer Systems (ICCS)-

National Technical University of Athens (NTUA), Greece. (e-mail:

cbellos@biomed.ntua.gr, e-mail: d.koutsouris@biomed.ntua.gr).

D. I. Fotiadis is with the Unit of Medical Technology and Intelligent

Information Systems, Dept of Materials Science and Engineering,

University of Ioannina, Greece. (e-mail: fotiadis@cc.uoi.gr).

operating mode to a basic survival operation mode. As a

consequence, the software functionality may have to be re-

modularised and re-allocated onto computational and

communication devices with very different characteristics

than the ones that were used originally. A further

complication is that a near extinction state might continue to

deteriorate, in an unpredictable manner, to full extinction

whilst the system itself is trying to recover.

Scenarios of extensive system damage and reconstruction

arise often in crisis management, when significant parts of

the ICT infrastructure and the software systems running on it

(e.g., communication system for emergency responders) may

be lost following some natural or other disaster. In such

cases, reinstating the damaged system might not be possible

through centralized servers and the original communication

infrastructure (e.g., WiFi), and require reconstruction from

any survived system components (e.g., survived devices of

emergency responders) and use of alternative

communication means (e.g., ad-hoc heterogeneous

networks).

Current state of the art techniques on software system

dependability, resilience and recovery address some aspects

of this problem (e.g., forecasting dependability levels [1],

increasing system resilience through redundancy [2], and

development of autonomic self-healing system capabilities

[3,4]). They cannot, however, support system reconstruction

from a near extinction state.

Software system re-construction from a “near extinct”

state is an activity that needs to be undertaken by the

survived components of the near extinct system in an

autonomic manner, i.e., in a self-triggered and self-managing

mode without assuming or depending on any form of human

intervention. Providing a solution to this problem is more

challenging than repairing a system following the detection

of faults. This is because it must deal with the extensive loss

of key system components and services, the computational

infrastructure where the system is deployed, and possibly

key system administration actors and functions. And whilst

autonomic system behaviour is necessary in such

circumstances, it is not sufficient on its own for

reconstructing the system.

Since approaches, which are based solely on software and

systems engineering methods, have failed to support

excessive system reconstruction, to achieve a breakthrough

we need to undertake a different and inter-disciplinary

approach. Biological organisms have effective DNA-driven

reconstruction and recovery mechanisms [5-7]. Inspired by

this observation, our approach is to develop a solution for

Biologically Inspired Near Extinct System Reconstruction

Athanasios Bibas, George Spanoudakis, Christos Bellos, Dimitrios I. Fotiadis, Senior Member, IEEE,

and Dimitrios Koutsouris, Senior Member, IEEE

C

Published in the 13th IEEE International Conference on BioInformatics and BioEngineering

extensive system reconstruction based on mechanisms

operating using similar principles and processes.

A key element of our approach is the concept of the

computational DNA of a software system (referred to as “co-

DNA” in the rest of this paper). co-DNA models and

encapsulates the basic functional units of a complex

software system that are required in order to fully

reconstruct it, properties of these units that need to be taken

into account in system reconstruction and re-organization,

and possible ways of re-combining the units into alternative

structures. Inspired by the biological analogue that any

individual cell in a multi-cellular organism has the same

information encoded in its DNA regardless of its committed

differentiated path, the co-DNA is physically present in all

the functional units of the original system enabling them to

function as system cells. Then, as in biological organisms,

the function of each of these system cells will be determined

by the unlocked part of the co-DNA that exists in it.

When a system gets in a near extinction state, its co-DNA

can be transmitted across external computational and

communication devices that are identified by the survived

components of the system, in order to recruit and make them

function as system cells as part of the system reconstruction

process. Co-DNA transmission and activation is performed

by computational processes analogous to biological

processes of transmitting DNA and enabling the functioning

of cells of biological organisms with proven effectiveness

for such organisms. Two types of responses of biological

cells are of particular relevance: tissue repair and tissue

regeneration [8-13]. Tissue repair refers to the physiologic

adaptation of an organ after injury in an effort to re-establish

continuity, and involves recruitment of cell types, different

from the original ones, in an effort to establish tissue

continuity, without resulting in the exact replacement of

lost/damaged tissue. Tissue regeneration refers to the

replacement of lost/damaged tissue with an exact copy, such

that both morphology and functionality are completely

restored. Both these responses are driven and enabled by the

DNAs of the relevant organisms. They are also realised

locally without any form of centralised control. The latter

characteristic of biological repair processes is particularly

relevant in the case of system reconstruction from a near

extinct state, as in such cases both the components that

undertake the key control functions of the original system

and critical communication lines between system

components might have been lost.

As shown in part (a) of Fig. 1, for example, a software

system may involve several devices of different

computational capabilities (e.g., servers, laptops, tablets, and

smart phones). Each of these devices will incorporate the co-

DNA of the system with a certain set of genes in it unlocked,

as required for the realisation of the functional role of the

device in the system. Furthermore, the role of the device

(system cell) can be dynamically activated and transformed

by altering the configuration of the locked and unlocked

genes of the co-DNA of the system that is stored in it

dynamically.

The role of co-DNA is also fundamental in the system

reconstruction process. System cells that have not been

destroyed in a near extinction state can transmit the co-DNA

of the system to any computational and communication

devices that they can identify, as shown in parts (b1) and

(b2) of Fig. 1, respectively. Subsequently, if the co-DNA is

accepted by the destination device, it can unlock some of its

genes in order to make the device assume specific operations

as part of the software system that the co-DNA encodes. The

unlocking of genes in the co-DNA that has arrived on a new

device can also make it transmit itself to other devices, as

shown in part (b3) of Fig. 1.

The genes that will be unlocked in the co-DNA that

arrives on a device are determined by a special regulatory

gene that is always unlocked. This gene encodes the core

bootstrapping operations for unlocking other genes. It also

incorporates primitive capabilities for detecting the

resources and computational capabilities of the device in

order to make unlocking decisions. As in biological

organisms, this process can enable the reconstruction of a

near extinct system through the use of different

computational resources, as shown in part (c) of Fig. 1.

Fig. 1. co-DNA enabled software systems and system reconstruction

II. CO-DNA MODELLING

DNA is a complex molecule that contains the genetic

information for the development and function of almost all

living organisms, organised in genes. Each gene contains the

information required for the production of a protein. Other

DNA segments have structural purposes or are involved in

the regulation of gene expression. Regardless of their

function, however, all cells have the same information in

their DNA and what differentiates their type (e.g., muscle

cell, heart cell) is the specific set of genes that are unlocked

in them (the rest of the genome is present but ‘locked’).

In an analogous manner, the co-DNA of a software

system is a library of computational genes, each encoding a

functional unit of the system with descriptions of different

key characteristics of the unit and the code that implements

it. The co-DNA includes also computational genes that can

realise the process of system reconstruction when this

becomes necessary. The genes of co-DNA can be locked or

unlocked dynamically. Unlocked genes become active

functional system components. Locked genes are inactive

components.

The existence of the co-DNA of a software system on a

computational or communication device can make this

device function as part of the system, i.e., to become a

system cell. This will happen when at least one of the genes

of the co-DNA on the device is unlocked. The exact part of

system functionality that is assumed by a device depends on

the genes of the system co-DNA that are unlocked whilst the

co-DNA is within the device.

The software system units that are encoded in the co-DNA

correspond to system components at some level in the

overall software system architecture. These components may

be atomic or composite. Their characterisation as “units”

from the perspective of co-DNA modeling reflects the view

that, even if they could be decomposed further into more

primitive components, the co-DNA model does not encode

this possibility and these components will have to be

activated and used as composite elements when the gene in

the co-DNA, which corresponds to them, is unlocked on a

computational device. The description of software system

units in co-DNA genes is multi-faceted and includes

specifications of:

1) the initial architectural model of the system and the role

of the particular unit within it

2) alternative patterns of re-assembling the unit with other

units in reconstructing the system (depending on

constraints arising during the reconstruction process, as

shown in parts (a) and (c) of Fig. 1)

3) provided and required interfaces of the unit and the

communication protocols through which it may interact

with other units (whether they are part of the same co-

DNA or other co-DNAs that may be recombined with the

gene dynamically (see process P7 below)

4) quality and security properties that the unit requires and

can guarantee whilst interacting with other units

5) the information that the unit could reveal about its

internal state and the interface through which such

information can be obtained by other system units in

order to enable them identify a wider “system state” that

may be necessary in deciding with which units to

connect and how to alter their behaviour if necessary

6) the code implementing the unit, and

7) possible configurations of the code depending on the

hosting device where the code should run.

The above facets are necessary in order to support

different operations in the system reconstruction process and

realize the functionality of the system.

In addition to genes encoding the functional units of the

system, the co-DNA incorporates genes with a regulatory

role in the system reconstruction process. The latter genes

undertake responsibility for functions such as the initial

unlocking (and the dynamic locking/unlocking) of other co-

DNA genes; transmitting the co-DNA to additional devices;

obtaining and analysing information about the operational

context of the co-DNA on a device and the state of the

system components on the local device where they belong;

and transmitting, receiving and acting on signals regarding

the overall state of the software system in order to undertake

appropriate component adaptation actions on the local

device. A conceptual view of the overall co-DNA structure

is shown in Fig. 2.

Fig. 2. Conceptual co-DNA structure.

III. BIOLOGICALLY INSPIRED SOFTWARE SYSTEM

RECONSTRUCTION PROCESSES

Having described the basic modeling facets of co-DNA,

we can now turn our attention to specific biological

processes that can be simulated to enable system

reconstruction:

Tissue communication and awareness of injury (P1):

In biological systems, following injury and loss of tissue, a

variety of local events will signal the initiation of tissue

response. An increase in the concentration of certain

chemical signals (chemotactic agents) released from injured

cells will signal the recruitment of certain type of cells to the

area of injury that will assist in wound healing. At the same

time, a fall in the extracellular concentration of certain

chemical signals, continuously produced by the cells

themselves, may trigger cell division (mitosis) of the

remaining cell population. With tissue regeneration and the

resultant increase in the number of cells, the concentration of

the chemical signal, will again rise. This would signal the

restoration of the original cell population and cell replication

will stop.

In software system reconstruction, each system cell is

modeled to transmit a tracer signal to neighbouring nodes.

The tracer signal is modeled as a random walk, and hence

each node will receive an average number of ‘visits’ over

time. The fall of this number below an expected threshold

will signify loss of a critical mass of nodes and will trigger a

response from the surviving nodes. The appropriate response

for this scenario is the recruitment of new unassigned nodes

for restoring system functionality. Depending on the

architecture, there could also be local and global constraints

to satisfy. co-DNA encodes such constraints instructing the

Normal genes encoding

functional system units

Regulatory genes Control

gene

co‐DNA structuring meta data

Assumed &

guaranteed

quality

properties

System architecture model

Architecture alternation patterns

Provided and required interfaces & communication protocols

Internal state exposition interface

Code

Configuration model

node, which receives them to act in a network building

capacity until local constraints are satisfied and then

continue monitoring this state. Depending on the schemes

for dealing with this issue, there might be simultaneous

competing reaction by different nodes or over-reaction.

Thus, appropriate schemes for self-regulation are also

needed, as part of the co-DNA encoding.

Cell signaling & response (P2): Cell communication is

realised through signals that are sent and received by cells or

come from the environment. Once a signal reaches its target

molecule (usually a protein), it works to change the

behaviour of the cell. Each cell receives a complex

combination of signals, which can simultaneously trigger

many different signaling pathways. Each step in a signaling

pathway provides an opportunity for communication

between different cells. Through this communication, the

cell integrates information from different signaling pathways

to initiate an appropriate response.

Similarly, co-DNAs can be transmitted across different

computational devices through networks using appropriate

protocols. These may be non-standard network overlay

protocols. They could also imitate malware techniques in

order to be used across different platforms. An overlay

network layer protocol should support co-DNA receipt,

dispatch, confirmation, encoding, decoding, and storage

actions. When a device receives a signal containing a co-

DNA transmitted and activates it, the device establishes an

application layer communication with other software cells of

the same system. At that level an additional communication

protocol is required to let the device act in an application

compatible manner. The protocol of this communication

must be determined by the co-DNA itself.

In response to appropriate signals, a cell may survive,

divide (cell replication), differentiate or die in a programmed

way (apoptosis) (Fig. 3). Similarly the surviving system

elements could ‘replicate’ themselves, leading to the

creation of separate virtual machines running on the same

computational device. The benefit of splitting a device into

two or more separate virtual machines is that the resulting

machines could behave in an independent way, assuming

roles of different software system cells. Subsequently, they

may also behave in different ways depending on the

transformations of their individual co-DNAs after the initial

split that led to their creation.

Cellular differentiation is the process by which a less

specialized cell becomes a more specialized cell type.

Differentiation changes a cell's size, shape, metabolic

activity, responsiveness to signals, and ultimately,

functionality. These changes are largely due to highly

controlled modifications in gene expression (epigenetics).

With a few exceptions, cellular differentiation almost never

involves a change in the DNA sequence itself. Thus,

different cells can have very different physical

characteristics despite having the same genome. Closely

related to this process is metaplasia, a type of cellular

adaptation to chronic injury. Metaplasia occurs when a

differentiated cell of a certain type is replaced by another

cell type, which may be less differentiated. Differentiation in

software systems may be modeled by system cells acquiring

new functions through dynamic unlocking of co-DNA

functions triggered by signals that specific system cells get

from their environment (e.g., low battery, memory resource

exhaustion, changes to device configurations).

In contrast to cell death following an external noxious

effect, apoptosis is a programmed cell death process,

designed for the normal elimination of unwanted cell

populations. Regulation of apoptosis is mediated by a

number of genes in DNA and their products. In system

recovery, the recruited software system cells may be also

modeled for programmed shutdown. This may be necessary

when, in the absence of any centralised form of control in

the reconstruction process, the system reaches a state of too

many elements of a given type. This function can be

triggered by “apoptosis” functions encoded in the co -DNA

of a system cell or newly sent external co-DNAs.

Tissue remodeling (P3): Healing is a complex and

dynamic process of restoring cellular structures and tissue

layers. As healing develops over time, the cellular and non-

cellular elements of the healed tissue change configuration

to resemble the original tissue before injury. Similarly, as

original system cells recover, the software system needs to

have the ability to reconfigure itself according to its original

architecture.

Fig. 3. Cell responses to different signals (represented by A-D)

DNA Replication (P4): DNA has the ability to replicate

itself through complex gene regulated mechanisms,

involving special proteins. The co-DNA should have the

ability to replicate itself faultlessly through a novel protocol

leading to the creation of exact copies that can be

transmitted to different computational devices. co-DNAs

should also encode mechanisms for identifying random

faults during their replication and correct them.

DNA Transformation and recombination (P5):

Transformation is the naturally occurring process of gene

transfer, which involves absorption of the genetic material

by a cell through the fusion of a foreign DNA with the

native DNA resulting in the genetic expression of the

received DNA. If DNA material from the cell of an

organism is incorporated into the DNA of a host cell of a

different organism, then a recombinant or chimeric DNA is

constructed. In another form of recombination, known as

transpositional recombination, mobile elements

(transposons) are inserted into a target DNA and can play a

critical role in the spread of several factors. Recombinant

DNA (rDNA) molecules can bring together genetic material

from multiple sources, creating sequences that would not

otherwise be found in biological organisms. rDNA is

possible because DNA molecules from all organisms share

the same chemical structure.

The ability to incorporate the co-DNA of an external

software system, through transfection, to a host device with

a different original function is also important for system

reconstruction (Fig. 4). The transfection of co-DNA may

take different forms, e.g., forced transfection (when near

extinction is reached in critical systems such as emergency

response systems), near shut down transfection and denial of

service. Transformation may need to be regulated to address

security and operational constraints (e.g., to avoid over-

utilisation of the target cell or the transfection of malware).

Fig. 4. Mechanisms of transformation. Exogenous DNA can be integrated to

the host DNA molecule (recombinant DNA) or in special DNA types

(plasmids) it can transform the cell (i.e. expression of plasmid genes)

without integration of the DNA material into the host cell’s chromosome.

Gene expression regulation (P6): The regulation of gene

expression includes a wide range of mechanisms that are

used by cells to increase or decrease the production of

specific gene products (proteins). This increases the

versatility and adaptability of an organism by allowing the

cell to express protein when needed. Gene expression

regulation is a multi-level process that generally requires

suppressors and trigger factors. In our approach, near-

extinction events can be modeled to trigger or suppress code

execution. Moreover, upon reaching a certain level of

complexity, a different process permitting the individual to

integrate the vast quantity of interactions with the outside

world may also emerge. This process (aka epigenesist) is

characterized by the possession of a basic structure that is

entirely defined by the genome (the innate part) but can also

be subjected to modification through lifetime interactions of

the individual with the environment (the acquired part).

As shown in Fig. 5, the DNA consists of: (i) dominant

genes alleles offering the different ways of developing each

cell and generating a phenotype, (ii) functional genes alleles

offering the different ways of each organ function, and (iii)

control genes alleles that constitute all the control processes

and the control processes themselves. All genes will be

silent (not active) except defining and controlling genes.

This structure inspires our envisaged conceptual structure of

co-DNA discussed in Sect. II.

Fig. 5. Gene regulation

IV. RELATED WORK

The development of biologically inspired solutions to

computational problems has become a significant trend

within the last couple of decades. Swarm Intelligence [14]

and Social Insect principles [15] have been used to address

problems of distributed search, optimization and routing in

wireless sensor networks [16]. Firefly Synchronization [17]

has been used to address robust and distributed clock

synchronization [18]. Artificial immune [19] and activator-

inhibitor systems have inspired solutions to distributed

coordination, network autonomicity and adaptability, and

system misbehaviour/anomaly detection [20]. Also problems

of content distribution, overlay network formulation, and

coordination in massively distributed systems have been

solved based on the bio-inspired principles of epidemic

spreading [21] and cellular signaling (networks) [22]. In

addition, DNA has been used to build basic computational

units (e.g., logic gates), and DNA like structures have been

used as a model of parallel computation in transactional

systems [23]. Inspired by natural ecosystems, SAPERE has

developed a framework for decentralized deployment and

execution of self-aware and adaptive services for future

pervasive network scenarios [24]. Related research includes

also genetic algorithms [25], and genetic programming (GP)

[26]. Genetic algorithms focus on evolving a population of

candidate solutions to an optimization problem, towards a

better solution. GP is used in genomics focusing on typical

genetic analysis and gene network inference.

Inspired by the autonomy of the human nervous system,

autonomic computing (AC [27,28]) is also concerned with

the development of self-managing capabilities (e.g., self-

configuration, self-optimization, self-protection, self-healing

and self-protection) for software systems. AC typically

advocates a reference control model of monitoring, analysis,

planning, execution and knowledge management capabilities

(MAPE-K [29]) that can be introduced to a normal system to

give it autonomic capabilities. MAPE-K has been realized in

some frameworks (e.g., ABLE [30], KX [31], AC Toolkit

[32]). AC research has also generated autonomic system

specification and adaptation policy languages (e.g., ASSL

[33,34]), and alternative implementations for MAPE-K

capabilities (e.g., monitoring and context awareness [35],

planning [36], knowledge [37] and process adaptation [38]).

The commonality of our co-DNA based system

reconstruction approach with the above strands of research is

that it also aims to draw upon biological mechanisms with

proven properties in order to develop a novel solution to a

challenging computational problem that requires forms of

autonomic behaviour. However, our focus and the

challenges that our approach aims to address are entirely

different from the above work, as we are targeting to address

the re-construction of large-scale software systems starting

from a state of excessive damage, operating with no

capabilities of central control within a continually changing

and possibly increasingly adverse environment (e.g., on-

going disaster/emergency).

V. CONCLUSION

In this paper, we have introduced a bio-inspired approach

for reconstructing nearly extinct complex software systems.

This approach is based on encoding the co-DNA of a system

and computational analogues of biological processes

enabling its transmission over computational devices and,

through it, the transformation of the latter into system cells

that can realise chunks of the system functionality, and

spread further its reconstruction process.

Having outlined the fundamental structure of co-DNA and

the key biological processes that are plausible to utilize in

the system reconstruction process, we are currently

developing the computational framework that will realize

our approach. This development is informed by two case

studies. The first case study is a complex Crisis

Management Software Ecosystem (CMSE) that reaches a

near extinction state following a massive scale failure caused

by a natural disaster. The second case study is a

telecommunication network, involving different layers,

including radio access, the core network and/or the

backhaul/backbone network.

VI. REFERENCES

[1] F. Salfner, M. Lenk, & M. Malek, “A survey of online failure prediction

methods”, ACM Comp. Surveys, 42(3), 2010.

[2] B. Littlewood, L. Strigini, “Redundancy and diversity in security”.

Computer Security–ESORICS 2004. Springer, 2004. 423-438

[3] H. Huebscher, J. McCann, ‘A survey of autonomic computing –

degrees, models and applications”, ACM Computing Surveys, 40(3), 2008.

[4] H. Psaier, H. Dustdar, “A survey on self-healing systems: approaches

and systems”, Computing 91(1), 2011.

[5] A. R. Joyce, B. Palsson, “The model organism as a system: integrating

‘omics’ data sets”, Nature Publishing Group, March 2006 | Volume 7.

[6] Y. Derbal, “on modeling of living organisms using hierarchical coarse-

graining abstractions of knowledge”, J. Biol. Syst., 21, 1350008 (2013).

[7] B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K.

Roberts, P. Walter, Essential Cell Biology, March 27, 2009

[8] S.V.Perryman, K.G. Sylvester, “Repair and regeneration: opportunities

for carcinogenesis from tissue stem cells”, J Cell Mol Med, 2006 Apr-

Jun;10(2):292-308.

[9] K.P. Krafts, “Tissue repair: The hidden drama”, Organogenesis. 2010

Oct-Dec; 6(4):225-33.

[10] T.S. Stappenbeck, H. Miyoshi, “The role of stromal stem cells in tissue

regeneration and wound repair”. Science. 2009 Jun 26;324(5935):1666-9.

[11] E. Tanaka, B. Galliot, “Triggering the regeneration and tissue repair

programs”. Development, 136(3):349-53, 2009

[12] A.C. Heinrich, S.A. Patel, B.Y. Reddy, R. Milton, P. Rameshwar,

“Multi- and inter-disciplinary science in personalized delivery of stem cells

for tissue repair”, Curr Stem Cell Res Ther. 2009 Jan;4(1):16-22.

[13] B. Galliot, E. Tanaka, A. Simon, “Regeneration and tissue repair:

themes and variations”, Cell Mol Life Sci. 2008 Jan;65(1):3-7.

[14] M. Farooq, G.A. Di Caro, “Routing protocols for next-generation

networks inspired by collective behaviors of insect societies: An overview”,

Swarm Intelligence, Natural Computing, Springer, 2008, pp. 101–160.

[15] G. Theraulaz, E. Bonbeau, “A brief history of stigmergy”, Artificial

Life 5 (2) (1999) 97–116.

[16] H.F. Wedde, M. Farooq, Y. Zhang, “Beehive: an efficient fault-tolerant

routing algorithm inspired by honey bee behavior”, Ant Colony,

Optimization, and Swarm Intelligence, LNCS, vol. 3172, Springer, 2004, pp.

83–94.

[17] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, R. Nagpal, “Firefly

inspired sensor network synchronicity with realistic radio effects”, in Proc.

SenSys, 2005, pp. 142–153.

[18] D. Lucarelli, I.-J. Wang, “Decentralized synchronization protocols with

nearest neighbor communication”, in Proc. 2nd International Conference

on embedded Networked Sensor Systems, ACM, 2004, pp. 62–68.

doi:10.1145/1031495.1031503.

[19] S. Sarafijanovic, J.-Y. Le Boudec, “Artificial immune system for

collaborative spam filtering”, in Proc. NISCO 2007, 2008, pp. 39–51.

[20] S. Sarafijanovic´, J.-Y. Le Boudec, “An artificial immune system for

misbehavior detection in mobile ad-hoc networks with virtual thymus,

clustering, danger signal, and memory detectors”, Artif. Immune Syst.

(2004) 342–356.

[21] J.W. Mickens, B.D. Noble, “Modeling epidemic spreading in mobile

environments”, in Proc. 4th ACM Workshop on Wireless Security, 2005, pp.

77–86.

[22] F. Dressler, I. Dietrich, R. German, B. Krüger, “Efficient operation in

sensor and actor networks inspired by cellular signaling cascades”, in Proc.

Autonomics, 2007, pp. 1–10.

[23] M. Meisel, V. Pappas, L. Zhang, “A taxonomy of biologically inspired

research in computer networking”, Computer Networks 54(6): 901-916

(2010).

[24] Project Website: http://www.sapere-project.eu/

[25] W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, “Genetic

Programming - An Introduction”, Morgan Kaufmann and

Heidelberg:dpunkt, San Francisco, CA, 1998.

[26] M.W.Khan, M. Alam, “A survey of application: Genomics and genetic

programming, a new frontier”, Genomics 100 (2012) 65–71.

[27] H. Huebscher and J. McCann, “A survey of autonomic computing –

degrees, models and applications”, ACM Computing Surveys, 40(3), 2008.

[28] H. Psaier, and H. Dustdar. “A survey on self-healing systems:

approaches and systems”, Computing 91(1), 2011.

[29] Computing, Autonomic. “An architectural blueprint for autonomic

computing,” in IBM White Paper 2006

[30] J. P. Bigus, D.A. Schlosnagle, J.R. Pilgrim, W. N. Mills, Y. Diao,

“ABLE: A toolkit for building multiagent autonomic systems”. IBM

Systems Journal, 41(3), 350-371, 2002.

[31] G. Kaiser, J. Parekh, P. Gross, G. Valetto, “Kinesthetics extreme: An

external infrastructure for monitoring distributed legacy systems”, in Proc.

Autonomic Computing Workshop, 22-30, 2003.

[32] B. Jacob, R. Lanyon-Hogg, D.K. Nadgir, A.F. Yassin, “A practical

guide to the IBM autonomic computing toolkit”, IBM Redbooks, 2004.

[33] E. Vassev, M. Hinchey, “ASSL: A Software Engineering Approach to

Autonomic Computing”, IEEE Computer, 42(6):106-109, June 2009.

[34] Broto, Laurent, et al. “Autonomic management policy specification in

Tune”, in Proc. 2008 ACM Symp. on Applied computing. 2008.

[35] S. Agarwala, et al. “QMON: QoS-and utility-aware monitoring in

enterprise systems”, IEEE International Conference on Autonomic

Computing, 2006. ICAC'06.

[36] A. Ranganathan, R. Campbell, “Autonomic pervasive computing based

on planning”, in Proc. International Conference on Autonomic Computing,

IEEE, 2004.

[37] G. Tesauro, “Reinforcement learning in autonomic computing: A

manifesto and case studies”, Internet Computing, IEEE 11.1 (2007): 22-30.

[38] Lee, Kevin, et al. “Workflow adaptation as an autonomic computing

problem”, in Proc. 2nd workshop on Workflows in support of large-scale

science. ACM, 2007.

