188 research outputs found

    In the Wake of the Storm: Environment, Disaster, and Race After Katrina

    Get PDF
    Studies evidence of environmental disparities by which poor and minority communities are disproportionately exposed to disasters, are less prepared, and have less access to relief agencies. Makes recommendations for preparedness and environmental justice

    Investigation of Volatile Organic Compounds (VOCs) released as a result of spoilage in whole broccoli, carrots, onions and potatoes with HS-SPME and GC-MS

    Get PDF
    Vegetable spoilage renders a product undesirable due to changes in sensory characteristics. The aim of this study was to investigate the change in the fingerprint of VOC composition that occur as a result of spoilage in broccoli, carrots, onions and potatoes. SPME and GC-MS techniques were used to identify and determine the relative abundance of VOC associated with both fresh and spoilt vegetables. Although a number of similar compounds were detected in varying quantities in the headspace of fresh and spoilt samples, certain compounds which were detected in the headspace of spoilt vegetables were however absent in fresh samples. Analysis of the headspace of fresh vegetables indicated the presence of a variety of alkanes, alkenes and terpenes. Among VOCs identified in the spoilt samples were dimethyl disulphide and dimethyl sulphide in broccoli; Ethyl propanoate and Butyl acetate in carrots; 1-Propanethioland 2-Hexyl-5-methyl-3(2H)-furanone in onions; and 2, 3-Butanediol in potatoes. The overall results of this study indicate the presence of VOCs that can serve as potential biomarkers for early detection of quality deterioration and in turn enhance operational and quality control decisions in the vegetable industry

    Exploiting lung adaptation and phage steering to clear pan-resistant Pseudomonas aeruginosa infections in vivo

    Get PDF
    Pseudomonas aeruginosa is a major nosocomial pathogen that causes severe disease including sepsis. Carbapenem-resistant P. aeruginosa is recognised by the World Health Organisation as a priority 1 pathogen, with urgent need for new therapeutics. As such, there is renewed interest in using bacteriophages as a therapeutic. However, the dynamics of treating pan-resistant P. aeruginosa with phage in vivo are poorly understood. Using a pan-resistant P. aeruginosa in vivo infection model, phage therapy displays strong therapeutic potential, clearing infection from the blood, kidneys, and spleen. Remaining bacteria in the lungs and liver displays phage resistance due to limiting phage adsorption. Yet, resistance to phage results in re-sensitisation to a wide range of antibiotics. In this work, we use phage steering in vivo, pre-exposing a pan resistant P. aeruginosa infection with a phage cocktail to re-sensitise bacteria to antibiotics, clearing the infection from all organs

    A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas.

    Get PDF
    Multidrug resistance (MDR) represents a global threat to health. Here, we used whole genome sequencing to characterise Pseudomonas aeruginosa MDR clinical isolates from a hospital in Thailand. Using long-read sequence data we obtained complete sequences of two closely related megaplasmids (>420 kb) carrying large arrays of antibiotic resistance genes located in discrete, complex and dynamic resistance regions, and revealing evidence of extensive duplication and recombination events. A comprehensive pangenomic and phylogenomic analysis indicates that: 1) these large plasmids comprise an emerging family present in different members of the Pseudomonas genus, and associated with multiple sources (geographical, clinical or environmental); 2) the megaplasmids encode diverse niche-adaptive accessory traits, including multidrug resistance; 3) the accessory genome of the megaplasmid family is highly flexible and diverse. The history of the megaplasmid family, inferred from our analysis of the available database, suggests that members carrying multiple resistance genes date back to at least the 1970s

    Lytic activity by temperate phages of Pseudomonas aeruginosa in long-term cystic fibrosis chronic lung infections

    Get PDF
    Pseudomonas aeruginosa is the most common bacterial pathogen infecting the lungs of cystic fibrosis (CF) patients. The transmissible Liverpool epidemic strain (LES) harbours multiple inducible prophages (LESϕ2; LESϕ3; LESϕ4; LESϕ5; and LESϕ6), some of which are known to confer a competitive advantage in an in vivo rat model of chronic lung infection. We used quantitative PCR (Q-PCR) to measure the density and dynamics of all five LES phages in the sputa of 10 LES-infected CF patients over a period of 2 years. In all patients, the densities of free-LES phages were positively correlated with the densities of P. aeruginosa, and total free-phage densities consistently exceeded bacterial host densities 10–100-fold. Further, we observed a negative correlation between the phage-to-bacterium ratio and bacterial density, suggesting a role for lysis by temperate phages in regulation of the bacterial population densities. In 9/10 patients, LESϕ2 and LESϕ4 were the most abundant free phages, which reflects the differential in vitro induction properties of the phages. These data indicate that temperate phages of P. aeruginosa retain lytic activity after prolonged periods of chronic infection in the CF lung, and suggest that temperate phage lysis may contribute to regulation of P. aeruginosa density in vivo

    The role of temperate bacteriophages in bacterial infection

    Get PDF
    Bacteriophages are viruses that infect bacteria. There are an estimated 1031 phage on the planet, making them the most abundant form of life. We are rapidly approaching the centenary of their identification, and yet still have only a limited understanding of their role in the ecology and evolution of bacterial populations. Temperate prophage carriage is often associated with increased bacterial virulence. The rise in use of technologies, such as genome sequencing and transcriptomics, has highlighted more subtle ways in which prophages contribute to pathogenicity. This review discusses the current knowledge of the multifaceted effects that phage can exert on their hosts and how this may contribute to bacterial adaptation during infection

    Understanding the impact of temperate bacteriophages on their lysogens through transcriptomics

    Get PDF
    SUMMARY: This protocol enables the impact of prophages on their hosts to be revealed. Bacterial cultures are synchronized using conditions that best support the lysogenic state, limiting spontaneous induction. RT-qPCR unequivocally distinguishes prophage-restricted genes and those uncoupled from phage control from those that are expressed during the lytic replication cycle. ABSTRACT: Temperate phages are found integrated as prophages in the majority of bacterial genomes. Some prophages are cryptic and fixed in the bacterial chromosome, but others are active and can be triggered into a replicative form either spontaneously or by exposure to inducing factors. Prophages are commonly associated with the ability to confer toxin production or other virulence-associated traits on their host cell. More recent studies have shown they can play a much bigger role in altering the physiology of their hosts. The technique described here has enabled us to investigate how prophages affect gene expression in the opportunistic bacterium Pseudomonas aeruginosa.In this protocol, a portion of bacterial cells within a lysogenic culture is made to undergo lytic replication (spontaneous induction) with a high level of expression per cell of late phage genes, such as those associated with the assembly of phage particles, thus masking the low-level gene expression associated with lysogen-restricted gene expression. In this work, the growth of the wild-type P. aeruginosa strain PAO1 was compared with that of isogenic lysogens carrying different combinations of prophages from the Liverpool Epidemic Strain (LES) LESB58
    corecore